DISCRETE SEMICONDUCTORS

Product specification File under Discrete Semiconductors, SC14 September 1995

HILIP

PINNING

PIN

1

2

3

DESCRIPTION

Code: N0

base

emitter

collector

FEATURES

- Low current consumption
- High power gain
- Low noise figure
- High transition frequency
- Gold metallization ensures
 excellent reliability
- SOT323 envelope.

DESCRIPTION

NPN transistor in a plastic SOT323 envelope.

It is intended for low power amplifiers, oscillators and mixers particularly in RF portable communication equipment (cellular phones, cordless phones, pagers) up to 2 GHz.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	-	-	20	V
V _{CES}	collector-emitter voltage	$R_{BE} = 0$	-	-	15	V
I _C	DC collector current		-	-	18	mA
P _{tot}	total power dissipation	up to $T_s = 147 \text{ °C}$; note 1	-	-	150	mW
h _{FE}	DC current gain	$I_{C} = 5 \text{ mA}; V_{CE} = 6 \text{ V}; T_{j} = 25 \text{ °C}$	60	120	250	
f _T	transition frequency	$I_C = 5 \text{ mA}; V_{CE} = 6 \text{ V}; f = 1 \text{ GHz};$ $T_{amb} = 25 \text{ °C}$	-	9	-	GHz
G _{UM}	maximum unilateral power gain	$I_{c} = 5 \text{ mA}; \text{ V}_{CE} = 6 \text{ V}; \text{ f} = 900 \text{ MHz}; \\ T_{amb} = 25 \text{ °C}$	-	17	-	dB
F	noise figure	I _c = 1.25 mA; V _{CE} = 6 V; f = 900 MHz; T _{amb} = 25 °C	-	1.2	1.7	dB

Note

1. T_s is the temperature at the soldering point of the collector tab.

BFS505

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	-	20	V
V _{CES}	collector-emitter voltage	R _{BE} = 0	-	15	V
V _{EBO}	emitter-base voltage	open collector	-	2.5	V
I _C	DC collector current		-	18	mA
P _{tot}	total power dissipation	up to $T_s = 147 \ ^{\circ}C$; note 1	-	150	mW
T _{stg}	storage temperature		-65	150	°C
Т _ј	junction temperature		-	175	°C

THERMAL RESISTANCE

SYMBOL	PARAMETER	CONDITIONS	THERMAL RESISTANCE
R _{th j-s}	thermal resistance from junction to soldering point	up to $T_s = 147 \ ^\circ C$; note 1	190 K/W

Note

1. T_s is the temperature at the soldering point of the collector tab.

BFS505

CHARACTERISTICS

 T_j = 25 °C, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector cut-off current	$I_E = 0; V_{CB} = 6 V$	_	-	50	nA
h _{FE}	DC current gain	$I_{C} = 5 \text{ mA}; V_{CE} = 6 \text{ V}$	60	120	250	
C _e	emitter capacitance	I _C = i _c = 0; V _{EB} = 0.5 V; f = 1 MHz	-	0.4	-	pF
Cc	collector capacitance	$I_E = i_e = 0; V_{CB} = 6 V; f = 1 MHz$	-	0.4	-	pF
C _{re}	feedback capacitance	$I_{C} = 0; V_{CB} = 0.5 V; f = 1 MHz$	-	0.3	-	pF
f _T	transition frequency	I _C = 5 mA; V _{CE} = 6 V; f = 1 GHz; T _{amb} = 25 °C	-	9	-	GHz
G _{UM}	maximum unilateral power gain (note 1)	$I_{C} = 5 \text{ mA}; V_{CE} = 6 \text{ V}; f = 900 \text{ MHz};$ $T_{amb} = 25 ^{\circ}\text{C}$	-	17	-	dB
		$I_C = 5 \text{ mA}; V_{CE} = 6 \text{ V}; f = 2 \text{ GHz};$ $T_{amb} = 25 \text{ °C}$	-	10	-	dB
S ₂₁ ²	insertion power gain	$I_C = 5 \text{ mA}; V_{CE} = 6 \text{ V}; f = 900 \text{ MHz};$ $T_{amb} = 25 \text{ °C}$	13	14	-	dB
F	noise figure	$\Gamma_{s} = \Gamma_{opt}$; I _C = 1.25 mA; V _{CE} = 6 V; f = 900 MHz; T _{amb} = 25 °C	-	1.2	1.7	dB
		$\Gamma_{s} = \Gamma_{opt}$; I _C = 5 mA; V _{CE} = 6 V; f = 900 MHz; T _{amb} = 25 °C	-	1.6	2.1	dB
		$\Gamma_{s} = \Gamma_{opt}$; I _C = 1.25 mA; V _{CE} = 6 V; f = 2 GHz; T _{amb} = 25 °C	-	1.9	-	dB
P _{L1}	output power at 1 dB gain compression	$I_c = 5 \text{ mA}; V_{CE} = 6 \text{ V}; R_L = 50 \Omega;$ f = 900 MHz; T _{amb} = 25 °C	-	4	_	dBm
ITO	third order intercept point	note 2	-	10	-	dBm

Notes

1. G_{UM} is the maximum unilateral power gain, assuming S_{12} is zero and

$$G_{UM} = 10 \log \frac{|S_{21}|^2}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)} dB$$

2. $I_C = 5 \text{ mA}; V_{CE} = 6 \text{ V}; R_L = 50 \Omega; f = 900 \text{ MHz}; T_{amb} = 25 \text{ °C};$ $f_p = 900 \text{ MHz}; f_q = 902 \text{ MHz};$ measured at $f_{(2p-q)} = 898 \text{ MHz}$ and at $f_{(2p-q)} = 904 \text{ MHz}.$

In Figs 6 to 9, G_{UM} = maximum unilateral power gain; MSG = maximum stable gain; G_{max} = maximum available gain.

MPC01A 50 gain (dB) GUM 40 30 20 Gmax 10 0 10⁻² 10⁻¹ 10 1 f (GHz) $I_C = 5 \text{ mA}; \text{ } V_{CE} = 6 \text{ } \text{V}; \text{ } T_{amb} = 25 \text{ }^\circ\text{C}.$ Fig.9 Gain as a function of frequency.

BFS505

NPN 9 GHz wideband transistor

PACKAGE OUTLINE

SOT323

Product specification

NPN 9 GHz wideband transistor

BFS505

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
more of the limiting values may of the device at these or at an	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or ay cause permanent damage to the device. These are stress ratings only and operation by other conditions above those given in the Characteristics sections of the specification niting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.