20 STERN AVE.

U.S.A.

SPRINGFIELD. NEW JERSEY 07081

BLV36

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

VHF LINEAR PUSH-PULL POWER TRANSISTOR

Two NPN silicon planar epitexial transistor sections in one envelope to be used as a push-pull amplifier. This device is primarily intended for use in linear VHF television transmitters and transposers (vision or sound amplifier).

Features

- Internally matched input for wideband operation and high power gain
- Internal midpoint (RF ground) reduces negative feedback and improves power gain
- Increased input and output impedance (compared with single-ended transistors) simplify wideband matching
- Length of external emitter leads is not critical
- Diffused emitter balancing resistors for an optimum temperature profile
- · Gold metallization ensures excellent reliability

The envelope is an 8-lead flange type with a ceramic cap. All leads are isolated from the flange.

QUICK REFERENCE DATA

RF performance in push-pull amplifier

mode of operation	V _{CE}	I _C (ZS) A	f MHz	P _L	T _h	G _P dB	η _C %	gain compression dB
CW; class-AB	28	2 × 0.25	224.25	115	25	≥ 11.0 typ, 13.0	≥ 48 typ. 55	≤ 1.0*

* Assuming a 3rd order amplitude transfer characteristic, 1 dB gain compression corresponds with 30% sync input/25% sync output compression in television service (negative modulation, CCIR system).

MECHANICAL DATA

SOT161 (see Fig.1).

MECHANICAL DATA

Fig.1 SOT161.

1 = Emitter

2 = Emitter

3 = Collector (No.2)

4 = Base (No.2)

5 = Collector (No.1)

6 = Base (No.1)

7 = Emitter

7 = Emitter

Torque on screw: min. 0.60 Nm max. 0.75 Nm

Recommended screw: cheese-head 4-40 UNC/2A
Heatsink compound must be sparingly applied and evenly distributed.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

BLV36

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-emitter voltage (peak value); (peak value); VBE = 0
open base
Emitter-base voltage (open collector)
Collector current per transistor section DC or average
(peak value); f > 1 MHz
Total DC power dissipation; T _{mb} = 25 °C
RF power dissipation f > 1 MHz; T _{mb} = 25 °C
Storage temperature range
Operating junction temperature

- (1) Second breakdown limit.
- Fig.2 DC SOAR.

Conditions for Figs 2 and 3:

Rth mb-h = 0.25 K/W; Total device*.

- I Continuous DC operation
- II Continuous RF operation; (f > 1 MHz)
- III Short-time operation during mismatch; (f > 1 MHz)

Fig.3 Power/temperature derating curves.

THERMAL RESISTANCE

(dissipation = 180 W; T_{mb} = 25 °C)**

From junction to mounting base

(DC dissipation)

From junction to mounting base

(RF dissipation)

From mounting base to heatsink

R _{th j-mb} (DC)	=		0.85	K/W
---------------------------	---	--	------	-----

 $R_{th j-mb(RF)} = 0.64 \text{ K/W}$ $R_{th mb-h} = 0.25 \text{ K/W}$

- * Dissipation of either transistor section shall not exceed half rated power.
- ** Both transistor sections equally loaded.

BLV36

CHARACTERISTICS

Apply to either transistor section unless otherwise specified, T_{j} = 25 $^{0}\text{C}.$

Collector-emitter breakdown voltage VBE = 0; IC = 25 mA	V(BR)CES	>	65 V 33 V
open base; I _C = 100 mA	V _(BR) CEO	>	33 V
Emitter-base breakdown voltage open collector; IE = 10 mA	V _{(BR)EBO}	>	4 V
Collector cut-off current VBE = 0; VCE = 33 V	CES	<	10 mA
Second-breakdown energy; L = 25 mH; f = 50 Hz RBE = 10 Ω	ESBR	>	10 mJ
DC current gain* $I_C = 3.5 \text{ A; } V_{CE} = 25 \text{ V}$	hFE	typ. 15 to	45 100
Transition frequency at f = 100 MHz* -IE = 3.3 A; VCB = 25 V	fŢ	typ.	575 MHz
-I _E = 10 A; V _{CB} = 25 V	fΤ	typ.	600 MHz
Collector capacitance at f = 1 MHz IE = i _e = 0; V _{CB} = 25 V	C _c	typ.	155 pF
Feedback capacitance at f = 1 MHz I _C = 50 mA; V _{CE} = 25 V	C _{re}	typ.	88 pF
Collector-flange capacitance	C _{cf}	typ.	2 pF