New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

BLV38

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

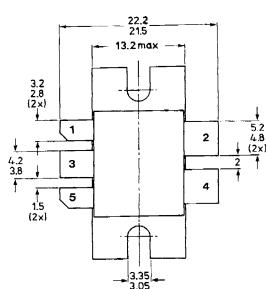
VHF LINEAR PUSH-PULL POWER TRANSISTOR

Push-pull npn silicon planar epitaxial transistor primarily intended for use in linear VHF television transmitters (vision or sound amplifiers).

Features

- · Internally matched input for wideband operation and high power gain
- Implanted emitter ballasting resistors for an optimum temperature profile
- Gold metallization ensures excellent reliability

The transistor has a 5-lead rectangular flange envelope with a ceramic cap. All leads are isolated from the flange.


QUICK REFERENCE DATA

MECHANICAL DATA SOT179 (see Fig.1).

RF performance at $T_h = 25 \text{ °C}$ in a common-emitter class-AB push-pull test circuit.

mode of operation	f	V _{CE}	^I C(ZS)	PL	GP	η _C	gain compression
	MHz	V	A	W	dB	%	dB
CW class-AB	224.25	35	2 × 0.2	225	> 8.0	> 50	≤ 1.0 *

 Assuming a 3rd order amplitude transfer characteristic, 1 dB gain compression corresponds with 30% sync input/25% sync output compression in television service (negative modulation, CCIR system).

15.4 21.49 28.1 max 21.49 max 1.52

MECHANICAL DATA

1 = Collector (No. 2)

Pinning:

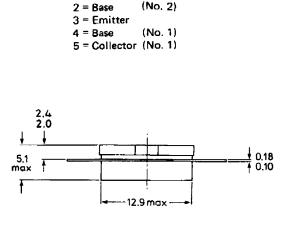


Fig.1 SOT179.

Torque on screw: min. 0.60 Nm max. 0.75 Nm Recommended screw: cheese head 4-40 UNC/2A Heatsink compound must be applied sparingly and evenly distributed.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

RATINGS	(per transistor	section unless	otherwise	specified)
---------	-----------------	----------------	-----------	------------

.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-emitter voltage VBE = 0; peak value	VCESM	max.	70	v
Collector-emitter voltage open base	VCEO	max.	40	v
Emitter-base voltage (open collector)	VEBO	max.	4.0	v
Collector current DC or average peak (f > 1 MHz)	IC; IC(AV) ICM	max. max.	10 30	
DC power dissipation (both sections)* T _{mb} = 25 °C; f > 1 MHz	P _{tot}	max.	290	w
RF power dissipation (both sections)* T _{mb} ≠ 25 °C; f > 1 MHz	Ptot	max.	450	w
Storage temperature range	Τ _{stg}	65 to ·	+ 150	oC
Operating junction temperature	τ _i	max.	200	oC

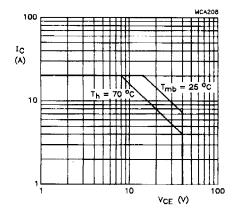
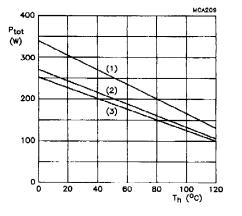



Fig.2 DC SOAR.

(1) short-time operation

(2) continuous RF operation (f > 1 MHz) (3) continuous DC operation

Fig.3 Power/temperature derating curves.

BLV38

THERMAL RESISTANCE (total device, both sections equally loaded) DC dissipation = 2×112 W, T_{mb} = $25 \circ C$ From junction to mounting base (DC) 0.6 K/W Rth j-mb(DC) max. From junction to mounting base (RF) 0.54 K/W Rth j-mb(RF) max. From mounting base to heatsink max. 0.2 K/W Rth mb-h **CHARACTERISTICS** Applicable to either transistor section unless otherwise specified; $T_i = 25 \text{ °C}$. Collector-emitter breakdown voltage 70 V $V_{BE} = 0; I_{C} = 60 \text{ mA}$ V(BR)CES min. Collector-emitter breakdown voltage open base; $I_C = 120 \text{ mA}$ 40 V V(BR)CEO min. Emitter-base breakdown voltage open collector; IE = 12 mA 4.0 V V(BR)EBO min. Collector cut-off current V_{CE} = 40 V; V_{BE} = 0 25 mA ICES max. DC current gain $I_{C} = 6 A; V_{CE} = 30 V$ 15 to 80 hFE. DC current gain ratio of both sections: $I_{C} = 6 A; V_{CE} = 30 V$ **Ahfe** 0.67 to 1.5 Collector capacitance at f = 1 MHz $i_{E} = i_{e} = 0; V_{CB} = 30 V$ Cc 170 pF typ. Collector-flange capacitance 4.0 pF Ccf typ.