New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

BLX97

U.H.F. LINEAR POWER TRANSISTOR

N-P-N multi-emitter silicon planar epitaxial transistor primarily for use in linear u.h.f. amplifiers for television transposers and transmitters.

Features:

guaranteed low intermodulation figures;

gold metallization ensures excellent reliability.

The transistor has a 14" capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA

R.F. performance in linear amplifier

mode of operation	^f vision	V _{CE}	lC	Th	d _{im} *	Po sync*	G _p
	MHz	V	mA	⁰C	dB	W	dB
class-A	860	25	500	25	-60	> 1,0	> 5,5
class-A	860	25	500	25	-60	typ. 1,1	tγp. 6,5

Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal -16 dB), zero dB corresponds to peak sync level.

MECHANICAL DATA

Fig. 1 SOT-48/3.

Dimensions in mm

0.14

Torque on nut: min. 0,75 Nm (7,5 kg cm) max. 0,85 Nm (8,5 kg cm) Diameter of clearance hole in heatsink: max. $4_{i}2$ mm. Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.

PRODUCT SAFETY This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely safe provided that the BeO disc is not damaged.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

BLX97

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Collector -base voltage (open emitter; peak value)	V CBOM	max,	40	v
Collector-emitter voltage (R_{BE} = 10 Ω ;peak value)	VCERM	max.	40	v
Collector-emitter voltage (open base)	V _{CEO}	max.	27	v
Emitter-base voltage (open collector)	v_{EBO}	max.	3, 5	v
Collector current (d.c.)	IC	max.	0, 8	А
Collector current (peak value) $f > 1$ MHz	^I CM	max.	2	А
Total power dissipation up to T_{h} = 100 $^{0}\mathrm{C}$	Ptot	max.	12, 5	w

BLX97

CHARACTERISTICS $T_j = 25$ ^OC unless otherwise specified

Collector cut-off current

$I_{\rm E}$ = 0; $V_{\rm CB}$ = 20 V	^I CBO	<	200	μΑ
Breakdown voltages				
Collector-base voltage open emitter: $I_C = 2 \text{ mA}$	V _(BR) CBO	>	40	v
Collector -emitter voltage $R_{BE} = 10 \Omega$; $I_C = 10 mA$ open base; $I_C = 10 mA$	V _(BR) CER V _(BR) CEO	> >	40 27	v V
Emitter-base voltage open collector; I _E = 2 mA	V _{(BR)EBO}	>	3, 5	v
Saturation voltage				
$I_{C} = 400 \text{ mA}; I_{B} = 40 \text{ mA}$	v _{CEsat}	<	0, 75	v
D.C. current gain				
I_{C} = 400 mA; V_{CE} = 20 V	h _{FE}	>	30	•
I_{C} = 800 mA; V_{CE} = 20 V	h _{FE}	>	20	
Transition frequency				
I_{C} = 400 mA; V_{CE} = 20 V	f _T	>	1, 2	GHz
$I_{C} = 700 \text{ mA}; V_{CE} = 20 \text{ V}$	$^{\rm f}{ m T}$	>	1,0	GHz
Collector capacitance at $f = 1$ MHz				
$I_{E} = I_{e} = 0; V_{CB} = 20 V$	Cc	<	20	pF
Feedback capacitance at $f = 1 \text{ MHz}$				
$I_{C} = 20 \text{ mA}; V_{CE} = 20 \text{ V}; T_{mb} = 25 ^{o}C$	C _{re}	typ.	7	pF
Collector -stud capacitance	Ccs	typ.	2	pF