

HIGH VOLTAGE POWER DISSIPATION

- HIGH VOLTAGE POWER DARLINGTON
- AUTOMOTIVE IGNITION APPLICATIONS
- HIGH CURRENT

INTERNAL SCHEMATIC DIAGRAM

5-3661

500

2000

P (

DESCRIPTION

The BU920/921/922, BU920P/921P/922P, BU920-PFI/BU921PFI/BU922PFI and BU920T/921T/922T are silicon multiepitaxial planar NPN transistors in monolithic darlington configuration mounted respectively in Jedec TO-3 metal case, SOT-93 plastic package, ISOWATT218 fully isolated package and TO-220 plastic package.

They are particularly intended for automative ignition applications and inverter circuits for motor control.

ABSOLUT	E MAXIMUM RATINGS								
	Parameter		Value						
Symbol	TO-3 SOT-93 ISOWATT218 TO-220	BU BU9	920P 20PF1	BU921 BU921P BU921PFI BU921T	BU922 BU922P BU922PFI BU922T	Unit			
VCES	Collector-emitter Voltage (VBE = 0)		100	450	500	V			
VCEO	Collector-emitter Voltage (I _B = 0)	BU920T BU921T BU922T 400 450 500 350 400 450 5 10 15				V			
VEBO	Emitter-base Voltage (I _C = 0)	5							
I _C	Collector Current	10							
ICM	Collector Peak Current	BU920 BU920PFI BU920PFI BU920FFI BU920T BU921 BU921PFI BU921T BU922P BU922FI BU922FI BU922T Unit 400 450 500 V 350 400 450 V 5 V 10 A				15			Α
I _B	Base Current	5							
		TO-3	SOT-93	ISOWATT218	TO-220				
Ptot	Total Dissipation at $T_c \le 25$ °C	120	105	55	105	W			
T _{stg}	Storage Temperature - 65 to	175	150	150	150	°C			
T	Max. Operating Junction Temperature	175	150	150	150	°C			

A

BU920/BU920P/BU920PFI/BU920T

THERMAL DATA

			TO-3	SOT-93	ISOWATT218	TO-220	
Rith j-case	Thermal Resistance Junction-case	Max	1.25	1.2	2.27•	1.2	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Co	Min.	Typ.	Max.	Unit	
I _{CES}	Collector Cutoff Current (V _{BE} = 0)	$V_{CE} = 400 V V_{CE} = 450 V V_{CE} = 500 V V_{CE} = 400 V V_{CE} = 450 V V_{CE} = 500 V T_{c} = 150 °C$	for 920 Types for 921 Types for 922 Types for 920 Types for 921 Types for 922 Types			250 250 250 0.5 0.5 0.5	μΑ μΑ μΑ mA mA
ICEO	Collector Cutoff Current (1 _B = 0)	V _{CE} = 350 V V _{CE} = 400 V V _{CE} = 450 V	for 920 Types for 921 Types for 922 Types			250 250 250	μА μΑ μΑ
IEBO	Emitter Cutoff Current $(I_C = 0)$	V _{EB} = 5 V				50	mA
V _{CEO(sus)} *	Collector-emitter Sustaining Voltage	I _C = 100 mA	for 920 Types for 921 Types for 922 Types	350 400 450			V V V
V _{CE(sat)} *	Collector-emitter Saturation Voltage	$I_{\rm C} = 5 \text{ A}$ $I_{\rm C} = 7 \text{ A}$	I _B = 50 mA I _B = 140 mA			1.8 1.8	V V
V _{BE(sat)} *	Base-emitter Saturation Voltage	$I_{\rm C} = 5 \text{ A}$ $I_{\rm C} = 7 \text{ A}$	I _B = 50 mA I _B = 140 mA			2.2 2.5	V V
VF	Diode Forward Voltage	I _F = 7 A				2.5	V
	Functional Test (see test circuit Fig.2 and 3)	for 920 Types $V_{CE} = 350 V$ for 921 and 922 $V_{CE} = 400 V$		7 7			A

* Pulsed : pulse duration = 300 μ s, duty cycle = 1.5 %.

Safe Operating Areas.

Safe Operating Areas.

DC Current Gain.

Collector-emitter Saturation Voltage.

Collector-emitter Saturation Voltage.

Colltector-emitter Saturation Voltage.

Base-emitter Saturation Voltage.

Base-emitter Saturation Voltage.

Saturated Switching Characteristics.

Figure 1 : Clamped Es/o Test Circuit.

SGS-THOMSON

MICROELECTRONICS

45/

Clamped Reverse Bias Safe Operating Areas.

Figure 2 : Functional Test Circuit.

ISOWATT 218 PACKAGE CHARACTE-RISTICS AND APPLICATION

ISOWATT218 is fully isolated to 4000 V dc. Its thermal impedance, given in the data sheet, is optimized to give efficient thermal conduction together with excellent electrical isolation.

The structure of the case ensures optimum distances between the pins and heatsink. These distances are in agreement with VDE and UL creepage and clearance standards. The ISOWATT218 package eliminates the need for external isolation so reducing fixing hardware.

The package is supplied with leads longer than the standard TO-218 to allow easy mounting on pcbs. Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink capacitance.

ISOWATT218 thermal performance is better than that of the standard part, mounted with a 0.1 mm mica washer. The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for ISO-WATT218 packages is determined by :

$$P_{D} = \frac{T_{j} - T_{c}}{R_{th}}$$

THERMAL IMPEDANCE OF ISOWATT 218 PACKAGE

Fig. 4 illustrates the elements contributing to the thermal resistance of transistor heatsink assembly, using ISOWATT218 package.

The total thermal resistance $R_{th(tot)}$ is the sum of each of these elements.

The transient thermal impedance, Z_{th} for different pulse durations can be estimated as follows :

1 - for a short duration power pulse less than 1 ms ;

2 - for an intermediate power pulse of 5 ms to 50 ms :

$$Z_{th} = R_{thJ-C}$$

3 - for long power pulses of the order of 500 ms or greater :

 $Z_{th} = R_{thJ-C} + R_{thC-HS} + R_{thHS-amb}$ It is often possible to discern these areas on transient thermal impedance curves.

Figure 4.

RthJ-C RthC-HS RthHS-amb

