

BU931R/RP/RPFI BU932R/RP/RPFI

NPN POWER DARLINGTON

- AUTOMOTIVE MARKET
- HIGH PERFORMANCE ELECTRONIC
 IGNITION DARLINGTON
 HIGH PLACEDNED
- HIGH RUGGEDNESS

DESCRIPTION

These devices are multiepitaxial biplanar NPN transistors in monolithic darlington configuration mounted in TO-3, SOT-93 and ISOWATT218 packages. They are specially intended for automotive ignition applications and invertes circuits for motor controls. Controlled performances in the linear region make them particularly suitable for car ignitions where current limiting is achieved desaturing the darlington.

ABSOLUTE MAXIMUM RATINGS

	Parameter	Value				
Symbol	TO-3 SOT-93 ISOWATT218	BU931R BU931RI BU931RP	FI B	BU932R BU932RP BU932RPFI		
VCES	Collector-emitter Voltage (V _{BE} = 0)	450	450 500		V	
VCEO	Collector-emitter Voltage (IBE = 0)	400	400 450			
VEBO	Emitter-base Voltage (I _C = 0)	5				
IC	Collector Current	15				
ICM	Collector Peak Current (tp≤10 ms)	30			A	
IB	Base Current	1				
IBM	Base Peak Current (tp ≤ 10 ms)	5			A	
		TO-3	SOT-93	ISOWATT218		
Ptot	Total Dissipation at T _C ≤ 25°C	175	125	60	W	
T _{stg}	Storage Temperature	- 40 to 200	- 40 to 150	- 40 to 150	°C	
Tj	Max. Operating Junction Temperature	200	150	150	°C	

BU931R/RP/RPFI-BU932R/RP/RPFI

THERMAL DATA

			TO-3	SOT-93	ISOWATT218	
Rth J-case	Thermal Resistance Junction-case	Max	1	1	2.08•	C'W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
I _{CES}	Collector Cutoff Current (V _{BE} = 0)				1 5 1 5	mA mA mA
ICEO	Collector Cutoff Current $(I_B = 0)$	$\label{eq:constraint} \begin{array}{l} \mbox{for } \textbf{BU931R}/\textbf{BU931RP}/\textbf{BU931RPFI} \\ V_{CE} = 400 \ V \\ \mbox{for } \textbf{BU932R}/\textbf{BU932RP/BU932RPFI} \\ V_{CE} = 450 \ V \end{array}$			1	mA mA
I _{EBO}	Emitter Cutoff Current (I _C = 0)	V _{EB} = 5 V			50	mA
V _{CEO(sus)}	Collector-emitter Sustaining Voltage	I _C = 100 mA for BU931R/BU931RP/BU931RPFI for BU932R/BU932RP/BU932RPFI	400 450			V
V _{CE(sat)} *	Collector-emitter Saturation Voltage	$ \begin{array}{l} \mbox{for } \textbf{BU931R}/\textbf{BU931RP/BU931RPFI} \\ I_C = 7 \ A & I_B = 70 \ mA \\ I_C = 8 \ A & I_B = 100 \ mA \\ I_C = 10 \ A & I_B = 250 \ mA \\ \mbox{for } \textbf{BU932R}/\textbf{BU932RP} \ \textbf{BU932RPFI} \\ I_C = 8 \ A & I_B = 150 \ mA \\ \end{array} $		1.05 1.09 1.13 1.09	1.6 1.8 1.8	V V V
V _{BE(sat)} *	Base-emitter Saturation Voltage			1.75 1.92 1.77	2.2 2.5 2.2	V V V
h _{FE} *	DC Current Gain	I _C = 5 A V _{CE} = 10 V	300			
V _F °	Diode Forward Voltage	I _F = 10 A		1.43	2.8	V
	USE TEST (see fig. 2)	$V_{CC} = 24 V$ $V_{clamp} = 400 V$ L = 7 mH	8			A

INDUCTIVE LOAD

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
		$V_{CC} = 12 V$	$V_{clamp} = 300 V$				
	(see fig. 3)	L = 7 mH					
ts	Storage Time	$I_C = 7 A$	$I_B = 70 \text{ mA}$		15		μs
tr	Fall Time	$V_{BE} = 0$	$R_{BE} = 47 \Omega$		0.5		μs

* Pulsed : pulse duration = 300 µs. duty cycle = 1.5 %.

DC Current Gain.

Collector-emitter Saturation Voltage.

Safe Operating Areas.

DC Current Gain.

Collector-emitter Saturation Voltage.

Base-emitter Saturation Voltage.

Saturated Switching Characteristics (inductive load) (see fig. 3).

Clamped Reverse Bias Safe Operating Areas (see fig. 4).

Switching Times Percentage Variation vs. $T_{\mbox{case}}$ Inductive Load.

Figure 2 : Functional Test Waveforms.

ISOWATT 218 PACKAGE CHARACTE-RISTICS AND APPLICATION

ISOWATT218 is fully isolated to 4000 V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together with excellent electrical isolation.

The structure of the case ensures optimum distances between the pins and heatsink. These distances are in agreement with VDE and UL creepage and clearance standards. The ISOWATT218 package eliminates the need for external isolation so reducing fixing hardware.

The package is supplied with leads longer than the standard TO-218 to allow easy mounting on pcbs. Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink capacitance.

ISOWATT218 thermal performance is better than that of the standard part. mounted with a 0.1 mm mica washer. The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for ISO-WATT218 packages is determined by :

$$P_D = \frac{T_j - T_c}{R_{th}}$$

Figure 4 : Clamped Esb Test Circuit.

THERMAL IMPEDANCE OF ISOWATT 218 PACKAGE

Fig. 5 illustrates the elements contributing to the thermal resistance of transistor heatsink assembly, using ISOWATT218 package.

The total thermal resistance $R_{th(tot)}$ is the sum of each of these elements.

The transient thermal impedance, Z_{th} for different pulse durations can be estimated as follows :

1. for a short duration power pulse less than 1 ms ;

$$Z_{th} < R_{thJ-C}$$

2. for an intermediate power pulse of 5 ms to 50 ms ;

$$Z_{th} = R_{thJ-C}$$

3. for long power pulses of the order of 500 ms or greater :

It is often possible to discern these areas on transient thormal impedance curves.

Figure 5

RthJ-C RthC-HS RthHS-amb

