SGS-THOMSON MICROELECTRONICS

BU999

HIGH POWER FAST SWITCHING

ADVANCE DATA

DESCRIPTION

The BU1999 type is a silicon multiepitaxial planar NPN transistor and is mounted in SOT-93 plastic package. It is intended for use in switching and linear applications, and industrial equipments.

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{сво}	Collector-base Voltage (I _E = 0)	160	V
VCEO	Collector-emitter Voltage (I _B = 0)	140	V
VEBO	Emitter base Voltage $(I_{C} = 0)$	6	V
lc	Collector Current	25	A
ICM	Collector Peak Current	40	A
I _B	Base Current	10	A
Ptot	Total Power Dissipation at T _{case} ≤ 25 °C	106	W
Tstg	Storage Temperature	- 65 to 150	°C
T,	Junction Temperature	150	°C

November 1988

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice

BU999

THERMAL DATA

R _{th j-case}	Thermal Resistance Junction-case	Max	1.17	°C/W	
------------------------	----------------------------------	-----	------	------	--

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \ ^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
I _{CBO}	Collector Cutoff Current (I _E = 0)	V _{CB} = 160 V				100	μА
ICEO	Collector Cutoff Current (I _B = 0)	V _{CE} = 70 V				50	μА
ICEX	Collector Cutoff Current	V _{CE} = 140 V V _{BE} = - 1.5 V				10	μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 6 V$ $I_C = 0$				100	µА
V _{CEO(sus)}	Collector-emitter Sustaining Voltage	I _C = 50 mA I _B = 0		140			V
V _{CE(sat)} *	Collector-emitter Saturation Voltage	I _C = 10 A I _C = 25 A	I _B = 1 A I _B = 2.5 A			0.8 1.5	V V
V _{BE(sat)} *	Base-emitter Saturation Voltage	I _C = 10 A I _C = 25 A	$I_B = 1 A$ $I_B = 2.5 A$			1.8 2.5	V V
V _{BE(on)}	Base-emitter on Voltage	I _C = 10 A	$V_{CE} = 2 V$			1.8	V
h _{FE} *	DC Current Gain	$I_{C} = 0.5 A$ $I_{C} = 10 A$ $I_{C} = 25 A$	V _{CE} = 2 V V _{CE} = 2 V V _{CE} = 2 V	35 25 12		100	
tr	Rise Time	V _{CC} = 80 V				0.3	μs
ts	Storage Time	I _C = 10 A				1.5	μs
t _f	Fall Time	I _{B1} = I _{B2} = 1 A				0.25	μs

* Pulsed : pulse duration = 300 µs, duty cycle = 1.5 %.

