

BUF410/410I BUF410A/410AI

FASTSWITCH EASY-TO-DRIVE (ETD) NPN TRANSISTORS

PRELIMINARY DATA

- HIGH SWITCHING SPEED NPN POWER TRANSISTOR
- EASY TO DRIVE
- HIGH VOLTAGE FOR OFF-LINE APPLICA-TIONS
- 100KHz SWITCHING SPEED
- LOW COST DRIVE CIRCUITS
- LOW DYNAMIC SATURATION

APPLICATIONS

- SMPS
- MOTOR DRIVES

DESCRIPTION

These Easy-to-Drive FASTSWITCH NPN power transistors are specially designed for high reliability

industrial and professional power driving applications such as motor drives and off-line switching power supplies. ETD transistors will operate using easy drive circuits at up to 100KHz; this helps to simplify designs and improve reliability. The superior switching performance and low crossover losses reduce dissipation and consequently lower the equipment operating temperature. These ETD transistors are suitable for applications in high reliability medium power motors drives and half bridge and full bridge converters.

These Easy-to-Drive FASTSWITCH transistors are available in TO-218 and TO-3 packages. Additionally, the alumina isolated version is available in the TOP-3I package.

ABSOLUTE MAXIMUM RATINGS

		Va			
Symbol	Parameter	TO-218 TOP-3I	BUF410 BUF410I	BUF410A BUF410AI	Unit
VCEV	Collector-emitter Voltage (V _{BE} = - 1.5V)		850	1000	V
VCEO	Collector-emitter Voltage (I _B = 0)		4	50	V
VEBO	Emitter-base Voltage (I _C = 0)	7		V	
I _C	Collector Current		15		A
ICM	Collector Peak Current		30		A
I _B	Base Current		3		A
IBM	Base Peak Current		4	.5	A
			TO-218	TOP-3I	
Ptot	Total Dissipation at T _c < 25°C		125	85	W
Tstg	Storage Temperature		- 65 to 150		°C
Ť,	Max. Operating Junction Temperature		1	50	°C

BUF410/410I/410A/410AI

THERMAL DATA

			TO-218	TOP-31	
R _{thj} -case	Thermal Resistance Junction-case	Max	1	1.47	°C/W

ELECTRICAL CHARACTERISTICS ($T_1 = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ICER	Collector Cutoff Current ($R_{BE} = 10\Omega$)	$V_{CE} = V_{CEv}$ $V_{CE} = V_{CEv}$ $T_c = 100^{\circ}C$			0.2 1	mA mA
ICEV	Collector Cutoff Current	$V_{CE} = V_{CEV} V_{BE} = -1.5V$ $V_{CE} = V_{CEV} V_{BE} = -1.5V T_c = 100^{\circ}C$			0.2 1	mA mA
IEBO	Emitter Cutoff Current (I _C = 0)	$V_{EB} = 5V$			1	mA
VCEO(sus)	Collector Emitter Sustaining Voltage	$I_{\rm C} = 0.2$ A L = 25mH	450			V
V _{EBO}	Emitter-base Voltage (I _C = 0)	I _E = 50mA	7			V
V _{CE(sat)} *	Collector-emitter Saturation Voltage	$\begin{array}{ccccccc} I_{C} = 5A & I_{B} = 0.5A \\ I_{C} = 5A & I_{B} = 0.5A & T_{c} = 100^{\circ}C \\ I_{C} = 10A & I_{B} = 2A \\ I_{C} = 10A & I_{B} = 2A & T_{c} = 100^{\circ}C \end{array}$		0.8 0.5	2.8	V V V V
V _{BE(sat)} *	Base-emitter Saturation Voltage	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.9	1.5	V V V V
di _c /dt	Rate of Rise of on-state Collector Current	$ \begin{array}{lll} V_{CC} = 300V \ R_C = 0 & t_p = 3 \mu s \\ I_{B1} = 0.75A & T_j = 25^\circ C \\ I_{B1} = 0.75A & T_j = 100^\circ C \\ I_{B1} = 3A & T_j = 100^\circ C \end{array} $	45 100	60		A/μs A/μs A/μs
V _{CE} (3µs)	Collector-emitter Dynamic Voltage			2.1	8	V V
V _{CE} (5µs)	Collector-emitter Dynamic Voltage	$ \begin{array}{ll} V_{CC} = 300V & R_{C} = 60\Omega \\ I_{B1} = 0.75A & T_{j} = 25^{\circ}C \\ T_{j} = 100^{\circ}C \end{array} $		1.1	4	V V
ts t; tc	Storage Time Fall Time Cross Over Time	$\begin{array}{ll} I_{C}=5A & V_{CC}=50V \\ V_{BB}=-5V & R_{BB}=1.2\Omega \\ V_{Clamp}=400V & I_{B1}=0.5A \\ L=0.5mH \end{array}$		0.8 0.05 0.08		μs μs μs
ts t† tc	Storage Time Fall Time Cross Over Time				1.8 0.1 0.18	μs μs μs
V _{CEW}	Maximum Collector Emitter Voltage without Snubber	$\begin{array}{ll} l_{C}=5A & V_{CC}=50V \\ V_{BB}=-5V & R_{BB}=1.2\Omega \\ V_{clamp}=400V & l_{B1}=0.5A \\ L=0.5mH & T_{j}=125^{\circ}C \end{array}$	500			V
t _s t _f t _c	Storage Time Fall Time Cross Over Time	$ \begin{array}{ll} I_{C}=5A & V_{CC}=50V \\ V_{BB}=0 & R_{BB}=0.3\Omega \\ V_{clamp}=400V & I_{B1}=0.5A \\ L=0.5 mH \end{array} $		1.5 0.04 0.07		μs μs μs

Symbol	Parameter	Test C	onditions	Min.	Тур.	Max.	Unit
ts tr tc	Storage Time Fall Time Cross Over Time	$I_{C} = 5A$ $V_{BB} = 0$ $V_{clamp} = 400V$ L = 0.5mH	$R_{BB} = 0.3\Omega$ $I_{B1} = 0.5A$			3 0.15 0.25	μs μs μs
VCEW	Maximum Collector Emitter Voltage without Snubber	$I_{C} = 5A$ $V_{BB} = 0$ $V_{clamp} = 400V$ $L = 0.5mH$	$R_{BB} = 0.3\Omega$ $I_{B1} = 0.5A$	500			V
ts tr tc	Storage Time Fall Time Cross Over Time	$I_{C} = 10A$ $V_{BB} = -5V$ $V_{clamp} = 400V$ L = 0.25mH	$R_{BB} = 1.2\Omega$		1.9 0.06 0.12		μs μs μs
ts tr tc	Storage Time Fall Time Cross Over Time	$I_{C} = 10A$ $V_{BB} = -5V$ $V_{clamp} = 400V$ L = 0.25mH	$R_{BB} = 1.2\Omega$			3.2 0.12 0.3	μs μs μs
V _{CEW}	Maximum Collector Emitter Voltage without Snubber	I _{CWoff} = 15A V _{BB} = - 5V L = 0.17mH T ₁ = 125°C		400			V

ELECTRICAL CHARACTERISTICS (continued)

Turn-on Switching Test Circuit.

(1) Fast electronic switch (2) Non-inductive Resistor

Turn-off Switching Test Circuit.

(1) Fast electronic switch(2) Non-inductive Resistor

(3) Fast recovery rectifier

BUF410/410I/410A/410AI

Turn-on Switching Test Waveforms.

Turn-off Switching Waveforms (inductive load).

Reverse Biased Safe Operating Areas.

Forward Biased Safe Operating Areas.

Storage Time Versus Pulse Time.

