BUF410/410I BUF410A/410AI

FASTSWITCH EASY-TO-DRIVE (ETD) NPN TRANSISTORS

- HIGH SWITCHING SPEED NPN POWER TRANSISTOR
- EASY TO DRIVE
- HIGH VOLTAGE FOR OFF-LINE APPLICATIONS
- 100 KHz SWITCHING SPEED
- LOW COST DRIVE CIRCUITS
- LOW DYNAMIC SATURATION

APPLICATIONS

- SMPS
- MOTOR DRIVES

DESCRIPTION

These Easy-to-Drive FASTSWITCH NPN power transistors are specially designed for high reliability

PRELIMINARY DATA
industrial and professional power driving applications such as motor drives and off-line switching power supplies. ETD transistors will operate using easy drive circuits at up to 100 KHz ; this helps to simplify designs and improve reliability. The superior switching performance and low crossover losses reduce dissipation and consequently lower the equipment operating temperature. These ETD transistors are suitable for applications in high reliability medium power motors drives and half bridge and full bridge converters.
These Easy-to-Drive FASTSWITCH transistors are available in TO-218 and TO-3 packages. Additionally, the alumina isolated version is available in the TOP-3I package.

TO-218

TO. 3

TOP-3I

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	$\begin{aligned} & \text { TO-218 } \\ & \text { TOP-31 } \end{aligned}$	Value		Unit
			BUF410 BUF4101	BUF410A BUF410AI	
$\mathrm{V}_{\text {CEV }}$	Collector-emitter Voltage ($\mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V}$)		850	1000	V
$V_{\text {CEO }}$	Collector-emitter Voltage ($\mathrm{I}_{\mathrm{B}}=0$)		450		V
$\mathrm{V}_{\text {EBO }}$	Emitter-base Voltage ($I_{C}=0$)		7		V
I_{C}	Collector Current		15		A
ICM	Collector Peak Current		30		A
I_{B}	Base Current		3		A
$I_{\text {BM }}$	Base Peak Current		4.5		A
			TO.218	TOP-31	
P_{101}	Total Dissipation at $\mathrm{T}_{\mathrm{c}}<25^{\circ} \mathrm{C}$		125	85	W
$\mathrm{T}_{\text {SIg }}$	Storage Temperature		-65 10150		${ }^{\circ} \mathrm{C}$
T_{1}	Max. Operating Junction Temperature		150		${ }^{\circ} \mathrm{C}$

THERMAL DATA

			TO-218	TOP-31	
$\mathrm{R}_{\mathrm{th}_{1} \text {-case }}$	Thermal Resistance Junction-case	Max	1	1.47	C/W

ELECTRICAL CHARACTERISTICS $\left(T_{1}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Icer	Collector Cutoff Current ($\mathrm{R}_{\mathrm{BE}}=10 \Omega$)	$\begin{array}{ll} V_{C E}=V_{C E V} & \\ V_{C E}=V_{C E V} & T_{C}=100^{\circ} \mathrm{C} \\ \hline \end{array}$			$\begin{gathered} 0.2 \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
ICEV	Collector Cutoff Current	$\begin{aligned} & V_{C E}=V_{C E V} \quad V_{B E}=-1.5 V \\ & V_{C E}=V_{C E V} \quad V_{B E}=-1.5 V T_{c}=100^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 0.2 \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
I Ebo	Emitter Cutoff Current ($\mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{V}_{\text {EB }}=5 \mathrm{~V}$			1	mA
$\mathrm{V}_{\text {CEO }}$ (sus) ${ }^{\text {* }}$	Collector Emitter Sustaining Voltage	$I_{C}=0.2 \mathrm{~A} \quad \mathrm{~L}=25 \mathrm{mH}$	450			V
$V_{\text {Ebo }}$	Emitter-base Voltage ($\mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{I}_{\mathrm{E}}=50 \mathrm{~mA}$	7			V
$V_{C E(\text { sat })^{*}}$	Collector-emitter Saturation Voltage	$\begin{array}{lll} I_{C}=5 A & I_{B}=0.5 A & \\ I_{C}=5 A & I_{B}=0.5 A & T_{C}=100^{\circ} \mathrm{C} \\ I_{C}=10 A & I_{B}=2 A & \\ I_{C}=10 A & I_{B}=2 A & T_{C}=100^{\circ} \mathrm{C} \\ \hline \end{array}$		$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	$\begin{gathered} 2.8 \\ 2 \\ \hline \end{gathered}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$
$\mathrm{V}_{\mathrm{BE} \text { (sat) }}{ }^{\text {* }}$	Base-emitter Saturation Voltage	$\begin{array}{lll} I_{C}=5 A & I_{B}=0.5 A & \\ I_{C}=5 A & I_{B}=0.5 A & T_{C}=100^{\circ} \mathrm{C} \\ I_{C}=10 A & I_{B}=2 A & \\ I_{C}=10 A & I_{B}=2 A & T_{C}=100^{\circ} \mathrm{C} \\ \hline \end{array}$		$\begin{aligned} & 0.9 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$
$\mathrm{di}_{\mathrm{c}} / \mathrm{dt}$	Rate of Rise of on-state Collector Current	$\begin{array}{lll} V_{C C}=300 V & R_{C}=0 & t_{p}=3 \mu \mathrm{~s} \\ I_{B_{1}}=0.75 \mathrm{~A} & T_{j}=25^{\circ} \mathrm{C} \\ I_{B_{1}}=0.75 \mathrm{~A} & T_{j}=100^{\circ} \mathrm{C} \\ I_{B_{1}}=3 \mathrm{~A} & T_{j}=100^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{gathered} 45 \\ 100 \\ \hline \end{gathered}$	60		A/ $\mu \mathrm{S}$ $A / \mu s$ A $\mu \mathrm{s}$
$V_{C E}(3 \mu \mathrm{~s})$	Collector-emitter Dynamic Voltage	$\begin{array}{ll} V_{C C}=300 \mathrm{~V} & R_{C}=60 \Omega \\ I_{B}=0.75 \mathrm{~A} & T_{j}=25^{\circ} \mathrm{C} \\ & T_{1}=100^{\circ} \mathrm{C} \\ \hline \end{array}$		2.1	8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$V_{C E}(5 \mu \mathrm{~s})$	Collector-emitter Dynamic Voltage	$\begin{array}{ll} V_{C C}=300 \mathrm{~V} & R_{C}=60 \Omega \\ I_{B 1}=0.75 \mathrm{~A} & T_{j}=25^{\circ} \mathrm{C} \\ & T_{1}=100^{\circ} \mathrm{C} \\ \hline \end{array}$		1.1	4	$\begin{aligned} & V \\ & V \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \\ & \mathrm{t}_{\mathrm{c}} \end{aligned}$	Storage Time Fall Time Cross Over Time	$\begin{array}{ll} \hline I_{C}=5 \mathrm{~A} & \mathrm{~V}_{\mathrm{CC}}=50 \mathrm{~V} \\ V_{\text {BB }}=-5 \mathrm{~V} & R_{\text {BB }}=1.2 \Omega \\ V_{\text {clamp }}=400 \mathrm{~V} & I_{\mathrm{B} 1}=0.5 \mathrm{~A} \\ \mathrm{~L}=0.5 \mathrm{mH} & \end{array}$		$\begin{gathered} \hline 0.8 \\ 0.05 \\ 0.08 \end{gathered}$		$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$
$\begin{aligned} & \hline t_{s} \\ & t_{1} \\ & t_{c} \end{aligned}$	Storage Time Fall Time Cross Over Time	$I_{C}=5 \mathrm{~A}$ $\mathrm{~V}_{\mathrm{CC}}=50 \mathrm{~V}$ $V_{B B}=-5 \mathrm{~V}$ $R_{B B}=1.2 \Omega$ $V_{\text {clamp }}=400 \mathrm{~V}$ $I_{B 1}=0.5 \mathrm{~A}$ $L=0.5 \mathrm{mH}$ $T_{1}=100^{\circ} \mathrm{C}$			$\begin{gathered} 1.8 \\ 0.1 \\ 0.18 \end{gathered}$	
$V_{\text {CEW }}$	Maximum Collector Emitter Voltage without Snubber	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} & \mathrm{~V}_{\mathrm{CC}}=50 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} & R_{\mathrm{BB}}=1.2 \Omega \\ \mathrm{~V}_{\text {clamp }}=400 \mathrm{~V} & \mathrm{I}_{\mathrm{B}_{1}}=0.5 \mathrm{~A} \\ \mathrm{~L}=0.5 \mathrm{mH} & \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \\ \hline \end{array}$	500			V
$\begin{aligned} & t_{s} \\ & t_{1} \\ & t_{c} \end{aligned}$	Storage Time Fall Time Cross Over Time	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} & \mathrm{~V}_{\mathrm{CC}}=50 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{BB}}=0 & R_{\mathrm{BB}}=0.3 \Omega \\ \mathrm{~V}_{\text {clamp }}=400 \mathrm{~V} & \mathrm{I}_{\mathrm{B}_{1}}=0.5 \mathrm{~A} \\ \mathrm{~L}=0.5 \mathrm{mH} & \end{array}$		$\begin{gathered} 1.5 \\ 0.04 \\ 0.07 \end{gathered}$		$\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
$\begin{aligned} & t_{s} \\ & t_{t} \\ & t_{c} \end{aligned}$	Storage Time Fall Time Cross Over Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BB}}=0 \\ & \mathrm{~V}_{\text {clamp }}=400 \mathrm{~V} \\ & \mathrm{~L}=0.5 \mathrm{mH} \end{aligned}$	$\begin{aligned} & V_{C C}=50 \mathrm{~V} \\ & R_{\mathrm{BB}}=0.3 \Omega \\ & I_{B}=0.5 \mathrm{~A} \\ & T_{1}=100^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 3 \\ 0.15 \\ 0.25 \end{gathered}$	$\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{s}$
$V_{\text {cew }}$	Maximum Collector Emitter Voltage without Snubber	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} \\ & \mathrm{~V}_{\text {B }}=0 \\ & \mathrm{~V}_{\text {clamp }}=400 \mathrm{~V} \\ & \mathrm{~L}=0.5 \mathrm{mH} \end{aligned}$	$\begin{aligned} & V_{C C}=50 \mathrm{~V} \\ & R_{B B}=0.3 \Omega \\ & I_{B 1}=0.5 \mathrm{~A} \\ & T_{1}=125^{\circ} \mathrm{C} \end{aligned}$	500			V
$\begin{aligned} & t_{s} \\ & t_{1} \\ & t_{c} \end{aligned}$	Storage Time Fall Time Cross Over Time	$\begin{aligned} & I_{C}=10 \mathrm{~A} \\ & V_{B B}=-5 \mathrm{~V} \\ & V_{\text {clamp }}=400 \mathrm{~V} \\ & \mathrm{~L}=0.25 \mathrm{mH} \end{aligned}$	$\begin{aligned} & V_{C C}=50 \mathrm{~V} \\ & R_{B B}=1.2 \Omega \\ & V_{B}=2 A \end{aligned}$		$\begin{gathered} 1.9 \\ 0.06 \\ 0.12 \end{gathered}$		$\mu \mathrm{s}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$
$\begin{aligned} & t_{s} \\ & t_{1} \\ & t_{c} \end{aligned}$	Storage Time Fall Time Cross Over Time	$\begin{aligned} & I_{C}=10 \mathrm{~A} \\ & V_{B B}=-5 \mathrm{~V} \\ & V_{\text {ClamD }}=400 \mathrm{~V} \\ & \mathrm{~L}=0.25 \mathrm{mH} \end{aligned}$	$\begin{aligned} & V_{C C}=50 \mathrm{~V} \\ & R_{B B}=1.2 \Omega \\ & I_{B 1}=2 A \\ & T_{1}=100^{\circ} C \end{aligned}$			$\begin{gathered} 3.2 \\ 0.12 \\ 0.3 \end{gathered}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$
$V_{\text {CEW }}$	Maximum Collector Emitter Voltage without Snubber	$\begin{aligned} & I_{C W O I I}=15 \mathrm{~A} \\ & V_{B B}=-5 \mathrm{~V} \\ & \mathrm{~L}=0.17 \mathrm{mH} \\ & T_{1}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & I_{B_{1}}=3 A \\ & V_{C C}=50 \mathrm{~V} \\ & R_{B B}=1.2 \Omega \end{aligned}$	400			V

Turn-on Switching Test Circuit.

(1) Fast electronic switch
(2) Non-inductive Resistor

Turn-off Switching Test Circuit.

(1) Fast electronic switch
(2) Non-inductive Resistor
(3) Fast recovery rectifier

Turn-on Switching Test Waveforms.

Turn-off Switching Waveforms (inductive load).

Reverse Biased Safe Operating Areas.

Forward Biased Safe Operating Areas.

Storage Time Versus Pulse Time.

