

BUX48B/V48B/V48BFI BUX48C/V48C/V48CFI

HIGH VOLTAGE POWER SWITCHING

DESCRIPTION

The BUX48B/C. BUV48B/C and BUV48BFI/CFI are silicon multiepitaxial mesa NPN transistors mounted respectively in TO-3 metal case, TO-218 plastic package and ISOWATT218 fully isolated package. They are particularly intended for switching and industrial applications from single and tree-phase mains.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	BUX48B BUV48B BUV48BFI		BUX48C BUV48C BUV48CFI	Unit	
VCER	Collector-emitter Voltage (R _{BE} = 10Ω)	1200 1200		1200	V	
VCES	Collector-emitter Voltage (V _{BE} = 0)	1200		1200	V	
VCEO	Collector-emitter Voltage (I _B = 0)	600 700		700	V	
VEBO	Emitter-base Voltage (I _C = 0)	7			V	
lc	Collector Current	15			A	
ICM	Collector Peak Current (tp < 5ms)	30			Α	
ICP	Collector Peak Current non Repetitive (tp < 20µs)	55			Α	
I _B	Base Current	4			A	
IBM	Base Peak Current (to < 5ms)	20			A	
		TO-3	TO-218	ISOWATT218		
Ptot	Total Dissipation at T _c < 25 C	175	125	65	W	
Tsta	Storage Temperature	- 65 to 200	- 65 to 150	- 65 to 150	°C	
T,	Max. Operating Junction Temperature	200	150	150	°C	

BUX48B/BUV48B/BUV48BFI-BUX48C/BUV48C/BUV48CFI

THERMAL DATA

			TO-3	TO-218	ISOWATT218	
R _{thj-case}	Thermal Resistance Junction-case	max	1	1	1.92	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
ICER	Collector Cutoff Current ($R_{BE} = 10 \Omega$)	V _{CE} = 1200 V V _{CE} = 1200 V	T _{case} = 125 °C			500 4	μA mA
ICES	Collector Cutoff Current (V _{BE} = 0)	V _{CE} = 1200 V V _{CE} = 1200 V	T _{case} = 125 °C			500 3	μA mA
ICEO	Collector Cutoff Current (I _B = 0)	V _{CE} = V _{CEO}				1	mA
IEBO	Emitter Cutoff Current $(I_{C} = 0)$	V _{EB} = 6 V				1	mA
VCEO(sus)*	Collector-emitter Sustaining Voltage $(I_B = 0)$	I _C = 100 mA for BUX48B/BUV48B/BUV48BFI for BUX48C/BUV48C/BUV48CFI		600 700			v
V _{CER(sus)} *	Collector-emitter Sustaining Voltage ($R_{BE} = 10 \Omega$)	I _C = 0.5 A L = 2 mH	$V_{clamp} = 1200 V$	1200			V
V _{CE(sat)} *	Collector-emitter Saturation Voltage	$I_{\rm C} = 6 \text{ A}$ $I_{\rm C} = 10 \text{ A}$	I _B = 1.5 A I _B = 4 A			1.5 3	V V
V _{BE(sal)} *	Base-emitter Saturation Voltage	$I_{\rm C} = 6 \text{ A}$ $I_{\rm C} = 10 \text{ A}$	I _B = 1.5 A I _B = 4 A			1.5 2	V V

Pulsed : pulse duration = 300 μs, duty cycle = 1.5 %.

RESISTIVE SWITCHING TIMES

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ton	Turn-on Time	$V_{CC} = 250 V$ $I_{C} = 6 A$	Ĭ	0.5	1	μs
ts	Storage Time	$I_{B1} = -I_{B2} = 1.5 \text{ A}$		1.5	3	μs
tr	Fall Time			0.2	0.7	μs

INDUCTIVE SWITCHING TIMES

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ts	Storage Time	$V_{CC} = 250 \text{ V}$ $I_{C} = 6 \text{ A}$		2		μs
tr	Fall Time	$I_{B1} = -I_{B2} = 1.5 \text{ A}$		0.15		μs
ts	Storage Time	V _{CC} = 250 V I _C = 6 A		3	6	μs
tr	Fall Time	$I_{B1} = -I_{B2} = 1.5 \text{ A}$ $T_{C} = 125 \text{ °C}$		0.33	0.60	μs

Safe Operating Areas (TO-3).

DC Current Gain.

Collector Current Spread vs. Base Emitter Voltage.

Safe Operating Areas (TO-218, ISOWATT218).

Collector-emitter Saturation Voltage.

Minimum Bias Current I_{BD} to Saturate the Discrete darlington.

BUX48B/BUV48B/BUV48BFI-BUX48C/BUV48C/BUV48CFI

Minimum Base Current I_{BD} to Saturate the Discrete Darlington.

Switching Times Resistive Load.

Switching Times Inductive Load.

DC Current Gain for Darlington Configuration (see fig. 1).

Switching Times Percentage Variation vs. Case Temperature.

Switching Times Percentage Variation vs. Case Temperature.

Forward Biased Accidental Overload Area.

5447 ICSM (A)55 175 B=20A Lase " 10A tp=20,05 64 45 4.0 36 CM nF 18 9 500 700 VCE (V) 0 100 300 TEST CIRCUITS

ISOWATT218 PACKAGE CHARACTERISTICS AND APPLICATION

ISOWATT218 is fully isolated to 4000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together with excellent electrical isolation. The structure of the case ensures optimum distances between the pins and heatsink. These distances are in agreement with VDE and UL creepage and clearance standards. The ISOWATT218 package eliminates the need for external isolation so reducing fixing hardware.

The package is supplied with leads longer than the standard TO-218 to allow easy mounting on pcbs.

THERMAL IMPEDANCE OF ISOWATT218 PACKAGE

Figure 1 illustrates the elements contributing to the thermmal resistance of a transistor heatsink assembly, using ISOWATT218 package.

The total thermal resistance $R_{th(tot)}$ is the sum of each of these elements. The transient thermal impedance, Z_{th} for different pulse durations can be estimated as follows :

1 - For a short duration power pulse of less than 1ms :

 $Z_{th} < R_{thJ \cdot C}$

2 - For an intermediate power pulse of 5ms to 50ms seconds :

 $Z_{th} = R_{thJ-C}$

Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink capacitance.

ISOWATT218 thermal performance is equivalent to that of the standard part, mounted with a 0.1mm mica washer. The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for ISOWATT218 packages is determined by :

$$P_D = \frac{T_j - T_c}{R_{th}}$$

3 - For long power pulses of the order of 500ms seconds or greater :

 $Z_{th} = R_{thJ-C} + R_{thC-HS} + R_{thHS-amb}$

It is often possible to discern these areas on transient thermal impedance curves.

Figure 1.

RthJ-C RthC-HS R_{thHS},amb