$\propto V_{\varepsilon \omega} \mathcal{I}_{\varepsilon r s e y} \delta_{\varepsilon m i}$-Conductor $\mathfrak{P}_{\text {roducts }}, I_{n c .}$

20 STERN AVE.
SPRINGFIELD, NEW JERSEY 07081
U.S.A.

TELEPHONE: (973) 376-2922
(212) 227-6005

FAX: (973) 376-8960

BUX 86 and BUX 87 are NPN silicon epibase power switching transistors in TO 126 plastic package (12 A 3 DIN 41869). They are outstanding for their short switching times and high dielectric strength and are particularly suitable for use in switching power supplies of TV sets. The collector is electrically connected to the metallic mounting area.

Approx, weight $0.5 \mathrm{~g} \quad$ Dimensions in mm

Maxlmum ratings		BUX 86	BUX 87	
Collector-emitter voltage	$V_{\text {ces }}$	800	1000	v
Collector-emitter voltage	$V_{\text {ceo }}$	400	450	V
Collector current	$I_{\text {c }}$	0.5	0.5	A
Collector peak current ($t_{\mathrm{p}} \leqslant 2 \mathrm{~ms}$)	$I_{\text {cm }}$	1.0	1.0	A
Base current	I_{8}	0.2	0.2	A
Base peak current	I_{BM}	0.3	0.3	A
Negative base peak current at turning off	$-I_{\text {BM }}$	0.3	0.3	A
Storage temperature range	$\mathrm{Tatg}^{\text {g }}$	-65 to		${ }^{\circ} \mathrm{C}$
Junction temperature	$\mathrm{T}_{\mathbf{j}}$	150	150	${ }^{\circ} \mathrm{C}$
Total power dissipation ($T_{\text {case }} \leq 60^{\circ} \mathrm{C}$)	$\mathrm{P}_{\text {tot }}$	20	20	W
Thermal resistance				
Junction to mounting area	$\mathcal{R}_{\text {thac }}$	\$4.6	\$4.6	K/W

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. N.J Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

Static characteristics ($\mathrm{Tamb}=25^{\circ} \mathrm{C}$)		BUX 86	BUX 87	
Collector-emitter breakdown voltage $\left(I_{C}=100 \mathrm{~mA} ; I_{\mathrm{B}}=0 ; L=25 \mathrm{mH}\right)$	$V_{\text {(BR) }}$ CEO	≥ 400	2450	V
Collector cutoff current				
($\mathrm{V}_{\text {ces }}=800 \mathrm{~V}$)	$I_{\text {ces }}$	< 0.1	-	mA
$\left(V_{\text {CES }}=800 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}\right)$	$I_{\text {ces }}$	<1	-	mA
$\left(V_{\text {CES }}=1000 \mathrm{~V}\right)$	$I_{\text {ces }}$	-	< 0.1	mA
$\left(V_{\text {CES }}=1000 \mathrm{~V} ; T_{1}=160^{\circ} \mathrm{C}\right)$	$l_{\text {ces }}$	-	<1	mA
Emitter cutoff current ($\mathrm{V}_{\text {EBO }}=5 \mathrm{~V}$)	$I_{\text {Ebo }}$	<1	<1	mA
DC current gain ($\left.\mathrm{V}_{\text {CE }}=5 \mathrm{~V} ; I_{C}=50 \mathrm{~mA}\right)$		50	50	-
Collector-emitter saturation voltage $\left(I_{\mathrm{C}}=100 \mathrm{~mA} ; I_{\mathrm{B}}=10 \mathrm{~mA}\right)$	$V_{\text {cEsat }}$	<1.6	<1.5	V
($\left.I_{C}=200 \mathrm{~mA} ; I_{B}=20 \mathrm{~mA}\right)$	$V_{\text {cesat }}$	<3	<3	v
Base-emitter saturation voltage ($I_{\mathrm{C}}=200 \mathrm{~mA} ; I_{\mathrm{B}}=\mathbf{2 0} \mathrm{mA}$)	$V_{\text {besat }}$	<1	<1	V
Dynamic characteristics ($\mathrm{Tamb}=25^{\circ} \mathrm{C}$)				
Transition frequency $\left(V_{C E}=10 \mathrm{~V} ; I_{\mathrm{C}}=50 \mathrm{~mA} ; f=1 \mathrm{MHz}\right)$	f_{T}	20	20	MHz
Swicthing times $\begin{aligned} & \left(\mathrm{VCC}=250 \mathrm{~V} ; I_{\mathrm{C}}=200 \mathrm{~mA} ; I_{\mathrm{B}}=20 \mathrm{~mA} ;\right. \\ & \left.-I_{\mathrm{B}}=40 \mathrm{~mA}\right) \end{aligned}$				
Turn-on time	$t_{\text {on }}$	0.25 (<0.5)	0.25 (<0.6)	$\mu \mathrm{s}$
Storage time	t_{s}	$2(<3.5)$	2 (<3.5)	$\mu \mathrm{s}$
Fall time ${ }^{\text {1] }}$	t_{4}	0.4	0.4	$\mu \mathrm{s}$

