

N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTORS

TYPE	V _{DSS}	R _{DS(on)}	I _D =
BUZ11S2	60 V	0.04 Ω	30 A
BUZ11S2FI	60 V	0.04 Ω	20 A

SGS-THOMSON MICROELECTRONICS

- VERY LOW ON-LOSSES
- LOW DRIVE ENERGY FOR EASY DRIVE
- HIGH TRANSCONDUCTANCE/Crss RATIO

INDUSTRIAL APPLICATIONS:

AUTOMATIVE POWER ACTUATORS

N - channel enhancement mode POWER MOS field effect transistors. Easy drive and very fast switching times make these POWER MOS transistors ideal for high speed switching circuits in applications such as power actuator driving, motor drive including brushless motors, hydraulic actuators and many other uses in automotive applications. They also find use in DC/DC converters and uninterruptible power supplies.

ABSOLUTE MAXIMUM RATINGS

V	Drain course voltage $(V_{ij} = 0)$		60	v
V _{DS}	Drain-source voltage ($V_{GS} = 0$)		50	v
VDGR	Drain-gate voltage ($R_{GS} = 20 \text{ K}\Omega$)		60	V
V _{GS}	Gate-source voltage	±	20	V
IDM	Drain current (pulsed) $T_c = 25^{\circ}C$	1	20	А
		BUZ11S2	BUZ11S2	=1
ID.	Drain current (continuous) T _c = 30°C	30	20	А
P _{tot} ■	Total dissipation at $T_c < 25^{\circ}C$	75	35	W
T _{stg}	Storage temperature	- 55	to 150	°C
Tj	Max. operating junction temperature	1	50	°C
	DIN humidity category (DIN 40040)		E	
	IEC climatic category (DIN IEC 68-1)	55/1	50/56	

See note on ISOWATT 220 in this datasheet

BUZ11S2 - BUZ11S2FI

THERMAL DATA	1	0-220	ISOWATT	220
R _{thj - case} Thermal resistance junction-case	max	1.67	3.57	°C/W
R _{thj - amb} Thermal resistance junction-ambient	max	7	5	°C/W

ELECTRICAL CHARACTERISTICS ($T_j = 25^{\circ}C$ unless otherwise specified)

Parameters	Test Conditions	Min.	Тур.	Max.	Unit
------------	-----------------	------	------	------	------

OFF

V _(BR) DSS	Drain-source breakdown voltage	I _D = 250 μA	$V_{GS} = 0$	60		V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = Max Rating V _{DS} = Max Rating	T _j = 125°C		250 1000	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20 V$			± 100	nA

ON

V _{GS (th)}	Gate threshold voltage	V _{DS} = V _{GS}	I _D = 1 mA	2.1	4	V
R _{DS (on)}	Static drain-source on resistance	V _{GS} = 10 V	I _D = 15 A		0.04	Ω

DYNAMIC

9 _{fs}	Forward transconductance	$V_{DS} = 25 V$	I _D = 15 A	4		mho
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25 V$ $V_{GS} = 0$	f= 1 MHz		2000 1100 400	рF pF pF

SWITCHING

$\begin{array}{llllllllllllllllllllllllllllllllllll$	$V_{DD} = 30 V$ $R_{GS} = 50 \Omega$	$I_D = 3 A$ $V_{GS} = 10 V$		45 110 230 170	ns ns ns ns	
--	--------------------------------------	--------------------------------	--	-------------------------	----------------------	--

See note on ISOWATT 220 in this datasheet

ELECTRICAL CHARACTERISTICS (Continued)

Parameters	Test Conditions	Min.	Тур.	Max.	Unit
------------	-----------------	------	------	------	------

SOURCE DRAIN DIODE

I _{SD} I _{SDM}	Source-drain current Source-drain current (pulsed)	$T_c = 25^{\circ}C$			30 120	A A
V _{SD}	Forward on voltage	I _{SD} = 60 A	V _{GS} = 0		2.6	V
t _{rr}	Reverse recovery time			200		ns
Q _{rr}	Reverse recovered charge	$I_{SD} = 30 \text{ A}$	di/dt = $100A/\mu s$	0.25		μC

BUZ11S2 - BUZ11S2FI

Maximum drain current vs temperature

Gate charge vs gate-source voltage

Capacitance variation

Gate threshold voltage vs temperature

Drain-source on resistance vs temperature

Source-drain diode forward characteristics

SGS-THOMSON

ISOWATT220 PACKAGE CHARACTERISTICS AND APPLICATION.

ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together with excellent electrical isolation.

The structure of the case ensures optimum distances between the pins and heatsink. The ISOWATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture assure consistent heat spreader-to-heatsink capacitance.

ISOWATT220 thermal performance is better the that of the standard part, mounted with a 0.1mm mica washer. The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for ISOWATT220 packages is determined by:

$$P_{D} = \frac{T_{j} - T_{c}}{R_{tb}}$$

from this I_{Dmax} for the POWER MOS can be calculated:

THERMAL IMPEDANCE OF ISOWATT220 PACKAGE

Fig. 1 illustrates the elements contributing to the thermal resistance of transistor heatsink assembly, using ISOWATT220 package.

The total thermal resistance $R_{th (tot)}$ is the sum of each of these elements.

The transient thermal impedance, Z_{th} for different pulse durations can be estimated as follows:

1 - for a short duration power pulse less than 1ms;

$$Z_{th} < R_{thJ-C}$$

2 - for an intermediate power pulse of 5ms to 50ms:

$$Z_{th} = R_{thJ-C}$$

3 - for long power pulses of the order of 500ms or greater:

$$Z_{th} = R_{thJ-C} + R_{thC-HS} + R_{thHS-amb}$$

It is often possibile to discern these areas on transient thermal impedance curves.

Fig. 1

RthJ-C RthC-HS RthHS-amb

ISOWATT DATA

Thermal impedance

Derating curve

