June 2012 # FDMC8588DC # N-Channel PowerTrench® MOSFET 25 V, 40 A, 5.7 m Ω #### **Features** - Max $r_{DS(on)}$ = 5.7 m Ω at V_{GS} = 4.5 V, I_D = 17 A - State-of-the-art switching performance - Lower output capacitance, gate resistance, and gate charge boost efficiency - Shielded gate technology reduces switch node ringing and increases immunity to EMI and cross conduction - RoHS Compliant #### **General Description** This N-Channel MOSFET has been designed specifically to improve the overall efficiency and to minimize switch node ringing of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$, fast switching speed and body diode reverse recovery performance. #### **Applications** - High side switching for high end computing - High power density DC-DC synchronous buck converter # MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted | Symbol | Parameter | | Ratings | Units | |-----------------------------------|---|-----------|-------------|-------| | V_{DS} | Drain to Source Voltage | (Note 5) | 25 | V | | V_{GS} | Gate to Source Voltage | (Note 4) | ±12 | V | | | Drain Current - Continuous (Package limited) T _C = 25 °C | ; | 40 | | | | - Continuous (Silicon Limited) T _C = 25 °C | ; | 73 | ^ | | ID | - Continuous | (Note 1a) | 17 | Α | | | - Pulsed | | 60 | | | E _{AS} | Single Pulse Avalanche Energy (Note 3) | | 29 | mJ | | Б | Power Dissipation $T_C = 25^{\circ}$ | C | 41 | 14/ | | P_{D} | Power Dissipation T _A = 25 °C | (Note 1a) | 3.0 | W | | T _J , T _{STG} | Operating and Storage Junction Temperature Range | | -55 to +150 | °C | #### **Thermal Characteristics** | $R_{\theta JC}$ | Thermal Resistance, Junction to Case | (Top Source) | 7.0 | | |-----------------|---|----------------|-----|------| | $R_{\theta JC}$ | Thermal Resistance, Junction to Case | (Bottom Drain) | 3.0 | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1a) | 42 | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1b) | 105 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1i) | 17 | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1j) | 26 | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1k) | 12 | | #### **Package Marking and Ordering Information** | Device Marking | Device | Package | Reel Size | Tape Width | Quantity | |----------------|------------|----------|-----------|------------|------------| | 08DC | FDMC8588DC | Power 33 | 13 " | 12 mm | 3000 units | # **Electrical Characteristics** T_J = 25 °C unless otherwise noted | Symbol | Parameter | Test Conditions | Min | Тур | Max | Units | |--|---|---|-----|-----|-----|-------| | Off Chara | cteristics | | | | | | | BV_{DSS} | Drain to Source Breakdown Voltage | I_D = 250 μA , V_{GS} = 0 V | 25 | | | V | | $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ | Breakdown Voltage Temperature Coefficient | I_D = 250 μA , referenced to 25 °C | | 5 | | mV/°C | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} = 20 V, V _{GS} = 0 V | | | 1 | μА | | I _{GSS} | Gate to Source Leakage Current, Forward | V _{GS} = 12 V, V _{DS} = 0 V | | | 100 | nA | #### **On Characteristics** | V _{GS(th)} | Gate to Source Threshold Voltage | $V_{GS} = V_{DS}, I_{D} = 250 \mu A$ | 0.8 | 1.2 | 1.8 | V | |--|---|---|-----|-----|-----|-------| | $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate to Source Threshold Voltage
Temperature Coefficient | I_D = 250 μA , referenced to 25 °C | | -4 | | mV/°C | | | | V _{GS} = 10 V, I _D = 18 A | | 3.6 | 5.0 | | | r _{DS(on)} | Static Drain to Source On Resistance | $V_{GS} = 4.5 \text{ V}, I_D = 17 \text{ A}$ | | 4.1 | 5.7 | mΩ | | . , | | $V_{GS} = 10 \text{ V}, I_D = 18 \text{ A}, T_J = 125 ^{\circ}\text{C}$ | | 5.5 | 7.6 | | | g _{FS} | Forward Transconductance | V _{DD} = 5 V, I _D = 17 A | | 103 | | S | # **Dynamic Characteristics** | C _{iss} | Input Capacitance | V -42 V V -0 V | 1695 | pF | |------------------|------------------------------|---|------|----| | C _{oss} | Output Capacitance | V _{DS} = 13 V, V _{GS} = 0 V,
f = 1 MHz | 493 | pF | | C _{rss} | Reverse Transfer Capacitance | 1 - 1 WILL | 63 | pF | | R_g | Gate Resistance | | 0.4 | Ω | # **Switching Characteristics** | t _{d(on)} | Turn-On Delay Time | | 8 | ns | |---------------------|-------------------------------|---|-----|----| | t _r | Rise Time | V _{DD} = 13 V, I _D = 17A, | 3 | ns | | t _{d(off)} | Turn-Off Delay Time | V_{GS} = 10 V, R_{GEN} = 6 Ω | 25 | ns | | t _f | Fall Time | | 2 | ns | | $Q_{g(TOT)}$ | Total Gate Charge at 4.5V | | 12 | nC | | Q _{gs} | Total Gate Charge | V _{DD} = 13 V, I _D = 17 A | 3.0 | nC | | Q_{gd} | Gate to Drain "Miller" Charge | | 3.0 | nC | #### **Drain-Source Diode Characteristics** | | $V_{GS} = 0 \text{ V}, I_{S} = 2 \text{ A}$ | (Note 2) | 0.7 | 1.2 | V | | |-----------------|---|--|----------|-----|-----|----| | v_{SD} | Source to Drain blode I ofward voltage | $V_{GS} = 0 \text{ V}, I_{S} = 17 \text{ A}$ | (Note 2) | 0.8 | 1.2 | V | | t _{rr} | Reverse Recovery Time | -I _E = 17 A, di/dt = 100 A/μ | • | 25 | | ns | | Q _{rr} | Reverse Recovery Charge | I _F = 17 A, αι/αι = 100 A/μS | | 10 | | nC | ### **Thermal Characteristics** | $R_{\theta JC}$ | Thermal Resistance, Junction to Case | (Top Source) | 7.0 | | |-----------------|---|----------------|-----|------| | $R_{\theta JC}$ | Thermal Resistance, Junction to Case | (Bottom Drain) | 3.0 | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1a) | 42 | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1b) | 105 | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1c) | 29 | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1d) | 40 | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1e) | 19 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1f) | 23 | C/VV | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1g) | 30 | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1h) | 79 | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1i) | 17 | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1j) | 26 | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1k) | 12 | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1I) | 16 | | #### Notes: 1. R_{0JA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design. a. 42 °C/W when mounted on a 1 in² pad of 2 oz copper b. 105 °C/W when mounted on a minimum pad of 2 oz copper - c. Still air, 20.9x10.4x12.7mm Aluminum Heat Sink, 1 in² pad of 2 oz copper - d. Still air, 20.9x10.4x12.7mm Aluminum Heat Sink, minimum pad of 2 oz copper - e. Still air, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper - f. Still air, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper - g. 200FPM Airflow, No Heat Sink,1 in² pad of 2 oz copper - h. 200FPM Airflow, No Heat Sink, minimum pad of 2 oz copper - i. 200FPM Airflow, 20.9x10.4x12.7mm Aluminum Heat Sink, 1 in 2 pad of 2 oz copper - j. 200FPM Airflow, 20.9x10.4x12.7mm Aluminum Heat Sink, minimum pad of 2 oz copper - k. 200FPM Airflow, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper - I. 200FPM Airflow, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper - 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. - 3. E_{AS} of 29 mJ is based on starting T_J = 25 °C, L = 1.2 mH, I_{AS} = 7 A, V_{DD} = 23 V, V_{GS} = 10V. 100% tested at L = 0.1 mH, I_{AS} = 16 A. - 4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied. - 5. The continuous Vds rating is 25V; however, a pulse of 28 V peak voltage for no longer than 3ns duration at 500KHz frequency can be applied. # Typical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted Figure 1. On Region Characteristics Figure 3. Normalized On Resistance vs Junction Temperature Figure 5. Transfer Characteristics Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage Figure 4. On-Resistance vs Gate to Source Voltage Figure 6. Source to Drain Diode Forward Voltage vs Source Current # Typical Characteristics T_J = 25°C unless otherwise noted Figure 7. Gate Charge Characteristics Figure 9. Unclamped Inductive Switching Capability Figure 11. Forward Bias Safe Operating Area Figure 8. Capacitance vs Drain to Source Voltage Figure 10. Maximum Continuous Drain Current vs Case Temperature Figure 12. Single Pulse Maximum Power Dissipation # Typical Characteristics T_J = 25°C unless otherwise noted Figure 13. Junction-to-Ambient Transient Thermal Response Curve # **Dimensional Outline and Pad Layout** 0.52 - A) PACKAGE STANDARD REFERENCE: JEDEC MO-240, ISSUE A, VAR. BA, DATED OCTOBER 2002. - B) ALL DIMENSIONS ARE IN MILLIMETERS. - C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM. - D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994. - E) IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA. - F) DRAWING FILE NAME: #### **TRADEMARKS** The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. F-PFS™ FRFET® AccuPower™ AX-CAP™ BitSiC® Global Power ResourceSM Green Bridge™ Build it Now™ Green FPS™ Green FPS™ e-Series™ CorePLUS™ CorePOWER™ Gmax™ GTO™ CROSSVOLT™ CTI ™ IntelliMAX™ Current Transfer Logic™ ISOPLANAR™ Marking Small Speakers Sound Louder DEUXPEED[®] Dual Cool™ and Better™ MegaBuck™ EcoSPARK® EfficentMax™ MICROCOUPLER™ **ESBC™** MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ Fairchild® MotionMax™ Fairchild Semiconductor® Motion-SPM™ FACT Quiet Series™ FACT® mWSaver™ FAST® OptoHiT™ OPTOLOGIC® FastvCore™ OPTOPLANAR® FETBench™ FlashWriter® * PowerTrench® PowerXS™ Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ SMART START™ Sync-Lock™ SYSTEM ®* GENERAL The Power Franchise® wer Tranchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* սSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ *Trademarks of System General Corporation, used under license by Fairchild Semiconductor. FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS. SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness #### ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. #### PRODUCT STATUS DEFINITIONS **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|-----------------------|---| | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | Rev. I61