January 2012

FDMS3686S

PowerTrench[®] Power Stage Asymmetric Dual N-Channel MOSFET Features

r catal co

Q1: N-Channel

- Max $r_{DS(on)} = 8 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 13 \text{ A}$
- Max $r_{DS(on)}$ = 11 m Ω at V_{GS} = 4.5 V, I_D = 11 A

Q2: N-Channel

- Max $r_{DS(on)}$ = 2.8 m Ω at V_{GS} = 10 V, I_D = 23 A
- Max $r_{DS(on)}$ = 3.8 m Ω at V_{GS} = 4.5 V, I_D = 21 A
- Low inductance packaging shortens rise/fall times, resulting in lower switching losses
- MOSFET integration enables optimum layout for lower circuit inductance and reduced switch node ringing
- RoHS Compliant

General Description

This device includes two specialized N-Channel MOSFETs in a dual PQFN package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFET (Q2) have been designed to provide optimal power efficiency.

Applications

- Computing
- Communications
- General Purpose Point of Load
- Notebook VCORE

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units	
V _{DS}	Drain to Source Voltage		30	30	V	
V _{GS}	Gate to Source Voltage	(Note 3)	±20	±20	V	
ID	Drain Current -Continuous (Package limited)	T _C = 25 °C	30	55		
	-Continuous (Silicon limited)	T _C = 25 °C	54	123	^	
	-Continuous $T_A = 25 \text{ °C}$ 13^{1a}		13 ^{1a}	23 ^{1b}	A	
	-Pulsed		40	100	_	
E _{AS}	Single Pulse Avalanche Energy		40 ⁴	60 ⁴	mJ	
C	Power Dissipation for Single Operation	T _A = 25 °C	2.2 ^{1a}	2.5 ^{1b}	W	
P _D	Power Dissipation for Single Operation $T_A = 25^{\circ}$		1.0 ^{1c}	1.0 ^{1d}	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			+150	°C	

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction to Ambient	57 ^{1a}	50 ^{1b}	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	125 ^{1c}	120 ^{1d}	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction to Case	3.5	2.0	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
22CA F10CC	FDMS3686S	Power 56	13 "	12 mm	3000 units

FDMS3686S
PowerTrench [®]
Power Stage

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Chara	icteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$ $I_D = 1 \ m A, \ V_{GS} = 0 \ V$	Q1 Q2	30 30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C $I_D = 10 \ m$ A, referenced to 25 °C	Q1 Q2		15 19		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 V, V_{GS} = 0 V$	Q1 Q2			1 500	μΑ μΑ
I _{GSS}	Gate to Source Leakage Current, Forwad	V _{GS} = 20 V, V _{DS} = 0 V	Q1 Q2			100 100	nA nA
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$ $V_{GS} = V_{DS}$, $I_D = 1 \ m A$	Q1 Q2	1.1 1.1	2 1.5	2.7 3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C $I_D = 10 \ m$ A, referenced to 25 °C	Q1 Q2		-6 -4		mV/°C
r _{DS(on)}	Drain to Source On Resistance	$ \begin{array}{c} V_{GS} = 10 \text{ V}, \ I_D = 13 \text{ A} \\ V_{GS} = 4.5 \text{ V}, \ I_D = 11 \text{ A} \\ V_{GS} = 10 \text{ V}, \ I_D = 13 \text{ A}, \ T_J = 125 \ ^\circ\text{C} \\ \hline V_{GS} = 10 \text{ V}, \ I_D = 23 \text{ A} \\ V_{GS} = 4.5 \text{ V}, \ I_D = 21 \text{ A} \end{array} $	Q1 Q2		5.8 8.5 7.8 2.2 3.0	8 11 10.8 2.8 3.8	mΩ
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 23 \text{ A}, \text{ T}_{J} = 125 \text{ °C}$ $V_{DS} = 5 \text{ V}, \text{ I}_{D} = 13 \text{ A}$	Q1		3.1 61	4.0	
9 _{FS}	Forward Transconductance	$V_{DS} = 5 V, I_D = 23 A$	Q2		124		S
Dynamic	Characteristics						
C _{iss}	Input Capacitance	Q1: V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2		1340 1820	1785 2420	pF
C _{oss}	Output Capacitance	Q2:	Q1 Q2		485 725	645 965	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2		53 86	80 130	pF
R _g	Gate Resistance		Q1 Q2	0.2 0.2	0.6 0.9	2 3	Ω
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time		Q1 Q2		8.2 9	16 18	ns
t _r	Rise Time	Q1: $V_{DD} = 15 \text{ V}, \text{ I}_{D} = 13 \text{ A}, \text{ R}_{GEN} = 6 \Omega$	Q1 Q2		2.5 4	10 10	ns
t _{d(off)}	Turn-Off Delay Time	Q2: V _{DD} = 15 V, I _D = 23 A, R _{GEN} = 6 Ω	Q1 Q2		20 23	32 36	ns
t _f	Fall Time	-100 - 100, -20 A, 10 GEN = 0.02			2.2 3	10 10	ns
Qg	Total Gate Charge	$V_{GS} = 0$ V to 10 V Q1	Q1 Q2		21 27	29 37	nC
Q _g	Total Gate Charge	$V_{GS} = 0 V \text{ to } 4.5 V I_D = 13 \text{ A}$	Q1 Q2		10 13	14 18	nC
Q _{gs}	Gate to Source Gate Charge	Q2 V _{DD} = 15 V,	Q1 Q2		3.9 4.6		nC
Q _{gd}	Gate to Drain "Miller" Charge	$I_{\rm D} = 23 \text{ A}$	Q1 Q2		3.1 3.7		nC

Parameter	Test Conditions	Туре	Min	Тур	Max	Units
urce Diode Characteristics						
Source to Drain Diode Forward Voltage	$ \begin{array}{ll} V_{GS} = 0 \ V, \ I_S = 2 \ A & (Note \ 2) \\ V_{GS} = 0 \ V, \ I_S = 13 \ A & (Note \ 2) \\ V_{GS} = 0 \ V, \ I_S = 2 \ A & (Note \ 2) \\ V_{GS} = 0 \ V, \ I_S = 23 \ A & (Note \ 2) \end{array} $	Q1 Q1 Q2 Q2		0.72 0.82 0.58 0.76	1.2 1.2 1.2 1.2	v
Reverse Recovery Time	Q1 I _F = 13 A, di/dt = 100 A/μs	Q1 Q2		25 25	40 39	ns
Reverse Recovery Charge	Q2 Ι _F = 23 A, di/dt = 300 A/μs	Q1 Q2		9 23	18 36	nC
a. 57 °C/W when mounted or		b. 50 °C/	W when m	ounted on	ine rt _{qCA} is	determin
	1 .					
©©©©© ₽₽₽₽₩₩	00000 0 75888					
minimum pad of 2 oz copper	Department of					
יד מיד מי Ilse Width < 300 ms, Duty cycle < 2.0%.						
		0.3 mH, Ia	s = 14 A.			
mJ is based on starting $T_J = 25 ^{\circ}C$; N-ch: L = 1 mH, I_{AS}	= 11 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L	= 0.3 mH, I	_{AS} = 17 A.			
	Source to Drain Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ined with the device mounted on a 1 in ² pad 2 oz copperdesign. a. 57 °C/W when mounted or a 1 in ² pad of 2 oz copperdesign. a. 57 °C/W when mounted or a 1 in ² pad of 2 oz copperdesign. c. 125 °C/W when mounted on a 1 in ² pad of 2 oz copperdesign. c. 125 °C/W when mounted on minimum pad of 2 oz copperdesign. c. 125 °C/W when mounted on minimum pad of 2 oz copperdesign. c. 125 °C/W when mounted on minimum pad of 2 oz copperdesign. c. 125 °C/W when mounted on minimum pad of 2 oz copperdesign.	Source to Drain Diode Forward Voltage $V_{GS} = 0 V, I_S = 2 A$ (Note 2) Source to Drain Diode Forward Voltage $V_{GS} = 0 V, I_S = 2 A$ (Note 2) Reverse Recovery Time Q1 Reverse Recovery Charge Q2 IF = 13 A, di/dt = 100 A/µs Q2 IF = 23 A, di/dt = 300 A/µs Inted with the device mounted on a 1 in ² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. a . 57 °C/W when mounted on a 1 in ² pad of 2 oz copper a . 57 °C/W when mounted on a 1 in ² pad of 2 oz copper a . 57 °C/W when mounted on a 1 in ² pad of 2 oz copper a . 57 °C/W when mounted on a 1 in ² pad of 2 oz copper a . 57 °C/W when mounted on a 1 in ² pad of 2 oz copper a . 57 °C/W when mounted on a 1 in ² pad of 2 oz copper a . 57 °C/W when mounted on a 1 in ² pad of 2 oz copper a . 57 °C/W when mounted on a minimum pad of 2 oz copper a . 57 °C/W when mounted on a minimum pad of 2 oz copper a . 57 °C/W when mounted on a minimum pad of 2 oz copper a . 57 °C/W when mounted on a minimum pad of 2 oz copper a . 57 °C/W when mounted on a minimum pad of 2 oz copper a . 57 °C/W when mounted on a minimum pad of 2 oz copper a . 57 °C/W when wounted on a minimum pad of 2 oz copper a . 57 °C/W when wounted on a minimum pad of 2 oz copper	Source to Drain Diode Forward Voltage $V_{GS} = 0$ V, $I_{S} = 2A$ (Note 2) $V_{GS} = 0$ V, $I_{S} = 13$ A (Note 2) $V_{GS} = 0$ V, $I_{S} = 2A$ (Note 2) $V_{GS} = 0$ V, $I_{S} = 2A$ (Note 2) Q2 Q1 Q2 Reverse Recovery Time Q1 $I_{F} = 13$ A, di/dt = 100 A/µs Q1 Q2 Q2 $I_{F} = 23$ A, di/dt = 300 A/µs Q1 Q2 Q1 Q2 inde with the device mounted on a 1 in ² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R _{q4C} is guided design. a. 57 °C/W when mounted on a 1 in ² pad of 2 oz copper b. 50 °C/ a 1 in ² a . 57 °C/W when mounted on a 1 in ² pad of 2 oz copper a. 57 °C/W when mounted on a 1 in ² pad of 2 oz copper b. 50 °C/ a 1 in ² a . 57 °C/W when mounted on a 1 in ² pad of 2 oz copper a. 57 °C/W when mounted on a 1 in ² pad of 2 oz copper b. 50 °C/ a 1 in ² a . 125 °C/W when mounted on a 1 in ² pad of 2 oz copper a. 57 °C/W when mounted on a 1 in ² pad of 2 oz copper b. 50 °C/ a 1 in ² a . 125 °C/W when mounted on a 1 in ² pad of 2 oz copper a. 125 °C/W when mounted on a 1 in ² pad of 2 oz copper b. 50 °C/ a 1 in ² a . 125 °C/W when mounted on a minimum pad of 2 oz copper a. 125 °C/W when mounted on a minimum pad of 2 oz copper b. 120 °C/W minimum a . 125 °C/W when mounted on minimum pad of 2 oz copper a. 126 °C/W b. 120 °C/W a . 125 °C/W when wounted on a minimum pad of 2 oz copper a. 126 °C/W b. 120 °C/W a .	Source to Drain Diode Forward Voltage $V_{GS} = 0 \lor, I_S = 13 \land$ (Note 2) Q1 Note 2) Q1 Q1 VGS = 0 \lor, I_S = 13 \land (Note 2) Q2 Q Q2 Q2 Reverse Recovery Time Q1 Q1 If F = 13 A, di/dt = 100 A/µs Q2 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 P = 13 A, di/dt = 100 A/µs Q2 Q2 Q1 Q2 Q2 Q1 Q2 Q2 Q1 Q2 Q2 Q1 Q2 Q2 Q2 Q1 Q2 Q2 Q1 Q2 Q2 Q2 Indexistence mounted on a 1 in ² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. Rquc is guaranteed b a 1 in ² pad of 2 oz copper b. 50 °C/W when mounted on a 1 in ² pad of 2 oz copper a 1 in ² pad of 2 oz copper b. 50 °C/W when mounted on a a 1 in ² pad of 2 oz copper Cooocoocoocoocoocoocoocoocoocoocoocoocoo	Source to Drain Diode Forward Voltage $V_{GS} = 0$ V, $I_{S} = 13$ A (Note 2) Q1 0.72 Source to Drain Diode Forward Voltage $V_{GS} = 0$ V, $I_{S} = 13$ A (Note 2) Q1 0.82 $V_{GS} = 0$ V, $I_{S} = 2$ A (Note 2) Q2 0.76 Reverse Recovery Time $ _{F} = 13$ A, di/dt = 100 A/µs Q2 2.76 Reverse Recovery Charge $ _{F} = 13$ A, di/dt = 100 A/µs Q1 2.3 ined with the device mounted on a 1 in ² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. Rajc Is guaranteed by design with design. a. 57 °C/W when mounted on a 1 in ² pad of 2 oz copper a. 57 °C/W when mounted on a 1 in ² pad of 2 oz copper a. 57 °C/W when mounted on a 1 in ² pad of 2 oz copper b. 50 °C/W when mounted on a 1 in ² pad of 2 oz copper a. 1 in ² pad of 2 oz copper a. 57 °C/W when mounted on a 1 in ² pad of 2 oz copper b. 50 °C/W when mounted on a 1 in ² pad of 2 oz copper a. 1 in ² pad of 2 oz copper a. 120 °C/W when mounted on a minimum pad of 2 oz copper b. 50 °C/W when mounted on a 1 in ² pad of 2 oz copper a. 120 °C/W when mounted on a minimum pad of 2 oz copper a. 120 °C/W when mounted on a minimum pad of 2 oz copper a. 120 °C/W when mounted on a minimum pad of 2 oz copper a. 120 °C/W when mounted on a minimum pad of 2 oz copper b. 50 °C/W when southet a sou ms, Duty cycle < 2.0%.	Source to Drain Diode Forward Voltage VGS = 0 V, IS = 2 A (Note 2) Q1 0.72 1.2 Source to Drain Diode Forward Voltage VGS = 0 V, IS = 13 A (Note 2) Q2 0.58 1.2 VGS = 0 V, IS = 23 A (Note 2) Q2 0.58 1.2 VGS = 0 V, IS = 23 A (Note 2) Q2 0.76 1.2 Reverse Recovery Time Q1 Q2 0.76 1.2 Reverse Recovery Charge Q2 Q2 2.3 36 uird esign. a. 57 *C/W when mounted on a 1 in ² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. RquC is guaranteed by design while RqCA is a fird design. b. 50 *C/W when mounted on a 1 in ² pad of 2 oz copper a. 57 *C/W when mounted on a 1 in ² pad of 2 oz copper a. 57 *C/W when mounted on a 1 in ² pad of 2 oz copper b. 50 *C/W when mounted on a 1 in ² pad of 2 oz copper a 1 in ² pad of 2 oz copper a 0 z 2 z copper a 1 in ² pad of 2 oz copper a 1 in ² pad of 2 oz copper a 1 in ² pad of 2 oz copper b. 10 *C/W when mounted on a minimum pad of 2 oz copper a 1 in ² pad of 2 oz copper a 1 in ² pad of 2 oz copper a 1 in ² pad of 2 oz copper a 1 in ² pad of 2 oz copper a 1 in ² pad of 2 oz copper a 1 in ² pad of 2 oz copper a 1 in ² pad of 2 oz

©2012 Fairchild Semiconductor Corporation FDMS3686S Rev.C1

©2012 Fairchild Semiconductor Corporation FDMS3686S Rev.C1

www.fairchildsemi.com

©2012 Fairchild Semiconductor Corporation FDMS3686S Rev.C1

FDMS3686S PowerTrench[®] Power Stage

©2012 Fairchild Semiconductor Corporation FDMS3686S Rev.C1

www.fairchildsemi.com

Typical Characteristics (continued)

SyncFET Schottky body diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverse recovery characteristic of the FDMS3686S.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

Figure 27. FDMS3686S SyncFET body diode reverse recovery characteristic

Figure 28. SyncFET body diode reverse leakage versus drain-source voltage

Application Information

1. Switch Node Ringing Suppression

Fairchild's Power Stage products incorporate a proprietary design* that minimizes the peak overshoot, ringing voltage on the switch node (PHASE) without the need of any external snubbing components in a buck converter. As shown in the figure 29, the Power Stage solution rings significantly less than competitor solutions under the same set of test conditions.

2. Recommended PCB Layout Guidelines

As a PCB designer, it is necessary to address critical issues in layout to minimize losses and optimize the performance of the power train. Power Stage is a high power density solution and all high current flow paths, such as VIN (D1), PHASE (S1/D2) and GND (S2), should be short and wide for better and stable current flow, heat radiation and system performance. A recommended layout procedure is discussed below to maximize the electrical and thermal performance of the part.

Figure 31. Recommended PCB Layout

Following is a guideline, not a requirement which the PCB designer should consider:

1. Input ceramic bypass capacitors C1 and C2 must be placed close to the D1 and S2 pins of Power Stage to help reduce parasitic inductance and High Frequency conduction loss induced by switching operation. C1 and C2 show the bypass capacitors placed close to the part between D1 and S2. Input capacitors should be connected in parallel close to the part. Multiple input caps can be connected depending upon the application.

2. The PHASE copper trace serves two purposes; In addition to being the current path from the Power Stage package to the output inductor (L), it also serves as heat sink for the lower FET in the Power Stage package. The trace should be short and wide enough to present a low resistance path for the high current flow between the Power Stage and the inductor. This is done to minimize conduction losses and limit temperature rise. Please note that the PHASE node is a high voltage and high frequency switching node with high noise potential. Care should be taken to minimize coupling to adjacent traces. The reference layout in figure 31 shows a good balance between the thermal and electrical performance of Power Stage.

3. Output inductor location should be as close as possible to the Power Stage device for lower power loss due to copper trace resistance. A shorter and wider PHASE trace to the inductor reduces the conduction loss. Preferably the Power Stage should be directly in line (as shown in figure 31) with the inductor for space savings and compactness.

4. The PowerTrench[®] Technology MOSFETs used in the Power Stage are effective at minimizing phase node ringing. It allows the part to operate well within the breakdown voltage limits. This eliminates the need to have an external snubber circuit in most cases. If the designer chooses to use an RC snubber, it should be placed close to the part between the PHASE pad and S2 pins to dampen the high-frequency ringing.

5. The driver IC should be placed close to the Power Stage part with the shortest possible paths for the High Side gate and Low Side gates through a wide trace connection. This eliminates the effect of parasitic inductance and resistance between the driver and the MOSFET and turns the devices on and off as efficiently as possible. At higher-frequency operation this impedance can limit the gate current trying to charge the MOSFET input capacitance. This will result in slower rise and fall times and additional switching losses. Power Stage has both the gate pins on the same side of the package which allows for back mounting of the driver IC to the board. This provides a very compact path for the drive signals and improves efficiency of the part.

6. S2 pins should be connected to the GND plane with multiple vias for a low impedance grounding. Poor grounding can create a noise transient offset voltage level between S2 and driver ground. This could lead to faulty operation of the gate driver and MOSFET.

7. Use multiple vias on each copper area to interconnect top, inner and bottom layers to help smooth current flow and heat conduction. Vias should be relatively large, around 8 mils to 10 mils, and of reasonable inductance. Critical high frequency components such as ceramic bypass caps should be located close to the part and on the same side of the PCB. If not feasible, they should be connected from the backside via a network of low inductance vias.

FDMS3686S PowerTrench[®] Power Stage

©2012 Fairchild Semiconductor Corporation FDMS3686S Rev.C1

www.fairchildsemi.com

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

intended to be an exhaustive list of	all such trauemarks.		
2Cool™	F-PFS™	PowerTrench [®]	The Power Franchise [®]
AccuPower™	FRFET®	PowerXS™	the ®
AX-CAP™*	Global Power Resource SM	Programmable Active Droop™	puwer
BitSiC [®]	Green Bridge™	QFET [®]	franchise TinyBoost™
Build it Now™	Green FPS™	QS™	TinyBuck™
CorePLUS™	Green FPS™ e-Series™	Quiet Series [™]	TinyCalc™
CorePOWER™	G <i>max</i> ™	RapidConfigure™	TinyLogic [®]
CROSSVOLT™	GTO™	ТМ	TINYOPTO™
CTL™	IntelliMAX™		TinyPower™
Current Transfer Logic™	ISOPLANAR™	Saving our world, 1mW/W/kW at a time™	TinyPWM™
DEUXPEED®	Marking Small Speakers Sound Louder		TinyWire™
Dual Cool™	and Better™	SmartMax™	TranSiC [®]
EcoSPARK [®]	MegaBuck™	SMART START™	TriFault Detect™
EfficentMax™	MICROCOUPLER™	Solutions for Your Success™	TRUECURRENT®*
ESBC™	MicroFET™	SPM®	μSerDes™
R	MicroPak™	STEALTH™	
+	MicroPak2 [™]	SuperFET®	SerDes
Fairchild [®]	MillerDrive™	SuperSOT™-3	UHC®
Fairchild Semiconductor [®]	MotionMax™	SuperSOT™-6	Ultra FRFET™
FACT Quiet Series™	Motion-SPM™	SuperSOT™-8	UniFET™
FACT®	mWSaver™	SupreMOS®	VCX™
FAST [®]	OptoHiT™ Control o cuc®	SyncFET™	VisualMax™
FastvCore™	OPTOLOGIC [®]	Sync-Lock™	VoltagePlus™
FETBench™	OPTOPLANAR®	SYSTEM ®*	XS™
FlashWriter [®] *	$\mathbb{C}_{\mathbb{R}}$	GENERAL	70
FPS™			

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- 1 Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2 A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.