

November 2012

FDP023N08B_F102 N-Channel PowerTrench[®] MOSFET 75V, 242A, 2.35mΩ

Features

- $R_{DS(on)} = 1.96m\Omega$ (Typ.) @ $V_{GS} = 10V$, $I_D = 75A$
- Low FOM R_{DS(on)}*Q_G
- Low reverse recovery charge, Q_{rr}
- Soft reverse recovery body diode
- Enables highly efficiency in synchronous rectification
- Fast Switching Speed
- 100% UIL Tested
- RoHS Compliant

Description

This N-Channel MOSFET is produced using Fairchild Semiconductor[®]'s advance PowerTrench[®] process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

Application

- Synchronous Rectification
- Battery Charger and Battery Protection circuit
- DC motor drives and Uninterruptible Power Supplies
- Micro Solar Inverter

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted*

Symbol		FDP023N08B_F102	Units			
V _{DSS}	Drain to Source Voltage			75	V	
V _{GSS}	Gate to Source Voltage			±20	V	
Ι _D		-Continuous ($T_c = 25^{\circ}C$, Silicon Limited)		242*		
	Drain Current	-Continuous (T _C = 100 ^o C, Silico	-Continuous (T _C = 100 ^o C, Silicon Limited)		A	
		-Continuous (T _C = 25 ^o C, Package Limited)		120		
I _{DM}	Drain Current	- Pulsed	(Note 1)	968	Α	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			961	mJ	
dv/dt	Peak Diode Recovery dv/dt (Note 3)		6	V/ns		
P _D	Dawan Diasin stian	$(T_{\rm C} = 25^{\rm o}{\rm C})$		245	W	
	Power Dissipation	- Derate above 25°C		1.64	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +175	°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	

* Package limitation current is 120A.

Thermal Characteristics

Symbol	Parameter	FDP023N08B_F102	Units
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max	0.61	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient, Max 62.5		

EDDOOCH	rking	Device	Packag	e De	scription			Quantity	y
FDP023N	Device Marking Device FDP023N08B FDP023N08B_F102		TO-220		rimmed Lea	ds		50	<u>.</u>
Electrica	Cha	racteristics T _c = 2	25°C unless o	otherwise noted					
Symbol		Parameter		Test Condition	IS	Min.	Тур.	Max.	Units
Off Charact	teristic	s							
BV _{DSS}			ltago	$L = 250 \mu \Lambda / L = -0 / T$	- 25 ⁰ C	75			V
ABV _{DSS}		in to Source Breakdown Voltage		$I_D = 250\mu A, V_{GS} = 0V, T_C = 25^{\circ}C$		15	-	-	-
ΔT_J		eakdown Voltage Temperature efficient		$I_D = 250\mu A$, Referenced to $25^{\circ}C$		-	0.35	-	V/ºC
	Zero Gate Voltage Drain Current		a t	$V_{DS} = 60V, V_{GS} = 0V$		-	-	1	
DSS			nt	$V_{DS} = 60V, T_{C} = 150^{\circ}C$		-	-	500	μA
GSS	Gate to	Body Leakage Current		$V_{GS} = \pm 20V, V_{DS} = 0V$		-	-	±100	nA
On Charact	teristic	s							
V _{GS(th)}		hreshold Voltage		$V_{GS} = V_{DS}, I_{D} = 250 \mu A$		2.0	-	3.8	V
R _{DS(on)}		c Drain to Source On Resistance		$V_{GS} = 10V, I_D = 75A$		-	1.96	2.35	mΩ
9FS	Forwa	rd Transconductance		V _{DS} = 10V, I _D = 75A		-	185	-	S
	haract	oristics					1		
	Т	Input Capacitance V _{DS} = 37.5 Output Capacitance f = 1MHz Reverse Transfer Capacitance f = 1MHz					10350	13765	pF
C _{oss}				V _{DS} = 37.5V, V _{GS} = 0V f = 1MHz		-	1855	2465	pF
C _{rss}							46.8	2400	pF
	_	y Related Output Capacitance		V _{DS} = 37.5V, V _{GS} = 0V			3290		pF
C _{oss(er)}		Gate Charge at 10V to Source Gate Charge to Drain "Miller" Charge		$V_{DS} = 37.5V, I_D = 100A$ $V_{GS} = 10V$			150	195	nC
Q _{g(tot)}	_						50.3	195	nC
ସୁ _{gs}							31.7	_	nC
Q _{gd}						-		-	V
V _{plateau}		Plateau Volatge		(Note 4)		-	4.9	-	-
Q _{sync}	_	Gate Charge Sync.		$V_{DS} = 0V, I_D = 50A$	(Note 5)	-	127.4	-	nC
Q _{oss}	Output	utput Charge		$V_{DS} = 37.5V, V_{GS} = 0V$		-	146.2	-	nC
Switching (Charao	cteristics							
d(on)	Turn-O	Turn-On Delay Time				-	41	92	ns
r	Turn-O	n Rise Time		$V_{DD} = 37.5V, I_D = 100A$ $V_{GS} = 10V, R_{GEN} = 4.7\Omega$		-	71	151	ns
d(off)	Turn-O	ff Delay Time				-	111	232	ns
f	Turn-O	ff Fall Time			(Note 4)	-	56	122	ns
ESR	Equiva	lent Series Resistance (0	G-S)	f = 1MHz		-	2.23	-	Ω
Drain-Sour	ce Dio	de Characteristics	5						
S	Maximum Continuous Drain to Source Dio		Source Diode	e Forward Current		-	-	242*	Α
SM	Maxim	timum Pulsed Drain to Source Diode F		orward Current		-	-	968	Α
√ _{SD}	Drain to	o Source Diode Forward	Voltage	V _{GS} = 0V, I _{SD} = 75A		-	-	1.3	V
rr		e Recovery Time		V _{GS} = 0V, V _{DD} =37.5V, I _S	_{SD} = 100A	-	79.3	-	ns
	Revers	e Recovery Charge		$dI_F/dt = 100A/\mu s$		-	114	-	nC

Typical Performance Characteristics Figure 1. On-Region Characteristics 400 150 100 I_b, Drain Current[A] I_D, Drain Current[A] 100 10 V_{GS} = 15.0V 10.0V 8.0V 7.0V 6.5V *Notes: 6.0V 1. 250µs Pulse Test 5.5V 2. $T_{C} = 25^{\circ}C$ 5.0V 10 └ 0.1 1 1 10 1 V_{DS}, Drain-Source Voltage[V]

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 6. Gate Charge Characteristics

Peak Diode Recovery dv/dt Test Circuit & Waveforms

Total Gate Charge Qsync. Test Circuit & Waveforms

$$Qsync = \frac{1}{R_G} \cdot \int V_{R_G}(t) dt$$

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

PowerTrench[®]

SuperSOT™-6

SuperSOT™-8

SupreMOS®

SyncFET™

Sync-Lock™

GENERAL ®

2Cool™ AccuPower™ AX-CAP™ BitSiC® Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST® FastvCore™ FETBench™ FlashWriter[®] * FPS™

Green Bridge™ Green FPS™ Green FPS[™] e-Series[™] Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ mWSaver™ OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]** R

Global Power ResourceSM

F-PFS™

FRFET®

PowerXS[™] Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3

The Power Franchise[®] wer p

 tranchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* <u>uSe</u>rDes™ UHC® Ultra FRFET UniFET™ VCX™ VisualMax™ VoltagePlus™

XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS. SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website,

www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 161