HARRIS
HGTD3N60C3,
SEMICONDUCTOR HGTD3N60C3S

Features

- $6 \mathrm{~A}, 600 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$
- 600V Switching SOA Capability
- Typical Fall Time -130 ns at $\mathrm{T}_{\mathbf{J}}=+150^{\circ} \mathrm{C}$
- Short Circuit Rating
- Low Conduction Loss

Description

The HGTD3N60C3 and HGTD3N60C3S are MOS gated high voltage switching devices combining the best features of MOSFETs and bipolar transistors. These devices have the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between $+25^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$.
The IGBT is ideal for many high voltage switching applications operating at moderate frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors

PACKAGING AVAILABILITY

PART NUMBER	PACKAGE	BRAND
HGTD3N60C3	TO-251AA	G3N60C
HGTD3N60C3S	TO-252AA	G3N60C

NOTE: When ordering, use the entire part number.
Add the suffix 9A to obtain the TO-252AA variant in Tape and Reel, i.e. HGTD3N60C3S9A.

Formerly developmental type TA49113.

Packaging

JEDEC TO-251AA

JEDEC TO-252AA

Terminal Diagram

N-CHANNEL ENHANCEMENT MODE

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

-	HGTD3N60C3 HGTD3N60C3S	UNITS
Collector-Emitter Voltage . BV ${ }_{\text {CES }}$	600	V
Collector Current Continuous		
	6	A
	3	A
Collector Current Pulsed (Note 1) . ${ }_{\text {I }}^{\text {CM }}$	24	A
Gate-Emitter Voltage Continuous. V V ${ }_{\text {GES }}$	± 20	V
Gate-Emitter Voltage Pulsed . V V ${ }_{\text {GEM }}$	± 30	V
Switching Safe Operating Area at $\mathrm{T}_{\mathrm{J}}=+150^{\circ} \mathrm{C}$, Figure $14 \ldots \ldots . .$.	18 A at 480 V	
	33	W
Power Dissipation Derating $\mathrm{T}_{\mathrm{C}}>+25^{\circ} \mathrm{C}$	0.27	W/ ${ }^{\circ} \mathrm{C}$
Reverse Voltage Avalanche Energy. E EARV	100	mJ
Operating and Storage Junction Temperature Range . TJ, TSTG	-40 to +150	${ }^{\circ} \mathrm{C}$
Maximum Lead Temperature for Soldering . T_{L}	260	${ }^{\circ} \mathrm{C}$
Short Circuit Withstand Time (Note 2) at $\mathrm{V}_{\mathrm{GE}}=10 \mathrm{~V}$, Figure $6 \ldots . .$.	8	$\mu \mathrm{s}$

NOTE:

1. Repetitive Rating: Pulse width limited by maximum junction temperature.
2. $\mathrm{V}_{\mathrm{CE}(\mathrm{PK})}=360 \mathrm{~V}, \mathrm{~T}_{J}=+125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GE}}=82 \Omega$.

Electrical Specifications $\quad \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETERS	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Collector-Emitter Breakdown Voltage	$\mathrm{BV}_{\text {CES }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$		600	-	-	V
Emitter-Collector Breakdown Voltage	$\mathrm{BV}_{\mathrm{ECS}}$	$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$		16	30	-	V
Collector-Emitter Leakage Current	$I_{\text {CES }}$	$\mathrm{V}_{\text {CE }}=B \mathrm{~V}_{\text {CES }}$	$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$	-	-	250	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CE }}=B \mathrm{~V}_{\text {CES }}$	$\mathrm{T}_{\mathrm{C}}=+150^{\circ} \mathrm{C}$	-	-	2.0	mA
Collector-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(SAT) }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 110}, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$	-	1.65	2.0	V
			$\mathrm{T}_{\mathrm{C}}=+150^{\circ} \mathrm{C}$	-	1.85	2.2	V
Gate-Emitter Threshold Voltage	$\mathrm{V}_{\mathrm{GE}(\mathrm{TH})}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$	3.0	5.5	6.0	V
Gate-Emitter Leakage Current	IGES	$\mathrm{V}_{\mathrm{GE}}= \pm 25 \mathrm{~V}$		-	-	± 250	nA
Switching SOA	SSOA	$\begin{aligned} & \mathrm{T}_{J}=+150^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{G}}=82 \Omega \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~L}=1 \mathrm{mH} \end{aligned}$	$\mathrm{V}_{\mathrm{CE}(\mathrm{PK})}=480 \mathrm{~V}$	18	-	-	A
			$\mathrm{V}_{\mathrm{CE}(\mathrm{PK})}=600 \mathrm{~V}$	2	-	-	A
Gate-Emitter Plateau Voltage	$\mathrm{V}_{\mathrm{GEP}}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 110}, \mathrm{~V}_{\mathrm{CE}}=0.5 \mathrm{BV}$ CES		-	8.3	-	V
On-State Gate Charge	$\mathrm{Q}_{\mathrm{G}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 110}, \\ & \mathrm{~V}_{\mathrm{CE}}=0.5 \mathrm{BV} \mathrm{~V}_{\mathrm{CES}} \end{aligned}$	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$	-	10.8	13.5	nC
			$\mathrm{V}_{\mathrm{GE}}=20 \mathrm{~V}$	-	13.8	17.3	nC
Current Turn-On Delay Time	${ }^{\text {t }}$ (ON) 1	$\left\{\begin{array}{l} \mathrm{T}_{J}=150^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{CE}}=\mathrm{I}_{\mathrm{C} 1110} \\ \mathrm{~V}_{\mathrm{CE}(\mathrm{PK})=0.8 \mathrm{BV}}^{\mathrm{CES}} \\ \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ \mathrm{R}_{\mathrm{G}}=82 \Omega \\ \mathrm{~L}=1 \mathrm{mH} \end{array}\right.$		-	5	-	ns
Current Rise Time	t_{RI}			-	10	-	ns
Current Turn-Off Delay Time	${ }^{\text {D }}$ (OFF) ${ }^{\text {a }}$			-	325	400	ns
Current Fall Time	${ }_{\text {t }}^{\text {FI }}$			-	130	275	ns
Turn-On Energy	E_{ON}			-	85	-	$\mu \mathrm{J}$
Turn-Off Energy (Note 1)	EOFF			-	245	-	$\mu \mathrm{J}$
Thermal Resistance	$\mathrm{R}_{\text {өJC }}$			-	-	3.75	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE:

1. Turn-Off Energy Loss ($\mathrm{E}_{\mathrm{OFF}}$) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero ($\mathrm{I}_{\mathrm{CE}}=0 \mathrm{~A}$). The HGTD3N60C3 and HGTD3N60C3S were tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. Turn-On losses include diode losses.

HARRIS SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:

$4,364,073$	$4,417,385$	$4,430,792$	$4,443,931$	$4,466,176$	$4,516,143$	$4,532,534$	$4,567,641$
$4,587,713$	$4,598,461$	$4,605,948$	$4,618,872$	$4,620,211$	$4,631,564$	$4,639,754$	$4,639,762$
$4,641,162$	$4,644,637$	$4,682,195$	$4,684,413$	$4,694,313$	$4,717,679$	$4,743,952$	$4,783,690$
$4,794,432$	$4,801,986$	$4,803,533$	$4,809,045$	$4,809,047$	$4,810,665$	$4,823,176$	$4,837,606$
$4,860,080$	$4,883,767$	$4,888,627$	$4,890,143$	$4,901,127$	$4,904,609$	$4,933,740$	$4,963,951$

Typical Performance Curves

FIGURE 1. TRANSFER CHARACTERISTICS

FIGURE 3. COLLECTOR-EMITTER ON-STATE VOLTAGE

FIGURE 5. MAXIMUM DC COLLECTOR CURRENT AS A FUNCTION OF CASE TEMPERATURE

FIGURE 2. SATURATION CHARACTERISTICS

FIGURE 4. COLLECTOR-EMITTER ON-STATE VOLTAGE

FIGURE 6. SHORT CIRCUIT WITHSTAND TIME

Typical Performance Curves (Continued)

FIGURE 7. TURN-ON DELAY TIME AS A FUNCTION OF COLLECTOR-EMITTER CURRENT

FIGURE 9. TURN-ON RISE TIME AS A FUNCTION OF COLLECTOR-EMITTER CURRENT

FIGURE 11. TURN-ON ENERGY LOSS AS A FUNCTION OF COLLECTOR-EMITTER CURRENT

FIGURE 8. TURN-OFF DELAY TIME AS A FUNCTION OF COLLECTOR-EMITTER CURRENT

FIGURE 10. TURN-OFF FALL TIME AS A FUNCTION OF COLLECTOR-EMITTER CURRENT

FIGURE 12. TURN-OFF ENERGY LOSS AS A FUNCTION OF COLLECTOR-EMITTER CURRENT

HGTD3N60C3, HGTD3N60C3S
Typical Performance Curves (Continued)

FIGURE 13. OPERATING FREQUENCY AS A FUNCTION OF COLLECTOR-EMITTER CURRENT

V_{CE}, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 15. CAPACITANCE AS A FUNCTION OF COLLECTOREMITTER VOLTAGE

FIGURE 14. MINIMUM SWITCHING SAFE OPERATING AREA

FIGURE 16. GATE CHARGE WAVEFORMS

FIGURE 17. IGBT NORMALIZED TRANSIENT THERMAL IMPEDANCE, JUNCTION TO CASE

Test Circuit and Waveforms

FIGURE 18. INDUCTIVE SWITCHING TEST CIRCUIT

Handling Precautions for IGBTs

Insulated Gate Bipolar Transistors are susceptible to gateinsulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler's body capacitance is not discharged through the device. With proper handling and application procedures, however, IGBT's are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBT's can be handled safely if the following basic precautions are taken:

1. Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as \dagger "ECCOSORBD LD26" or equivalent.
2. When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means - for example, with a metallic wristband.
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from circuits with power on.
5. Gate Voltage Rating - Never exceed the gate-voltage rating of $\mathrm{V}_{\mathrm{GEM}}$. Exceeding the rated V_{GE} can result in permanent damage to the oxide layer in the gate region.
6. Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the device due to voltage buildup on the input capacitor due to leakage currents or pickup.
7. Gate Protection - These devices do not have an internal monolithic zener diode from gate to emitter. If gate protection is required an external zener is recommended.

FIGURE 19. SWITCHING TEST WAVEFORMS

Operating Frequency Information

Operating Frequency Information for a Typical Device

Figure 13 is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current ($l_{C E}$) plots are possible using the information shown for a typical unit in Figures 4, 7, 8, 11 and 12. The operating frequency plot (Figure 13) of a typical device shows $\mathrm{f}_{\text {MAX1 }}$ or $\mathrm{f}_{\text {MAX2 }}$ whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.
$f_{M A X 1}$ is defined by $f_{M A X 1}=0.05 /\left(t_{D(O F F)}+t_{D(O N) I}\right)$. Deadtime (the denominator) has been arbitrarily held to 10% of the on- state time for a 50% duty factor. Other definitions are possible. $\mathrm{t}_{\mathrm{D}(\mathrm{OFF}) \mid}$ and $\mathrm{t}_{\mathrm{D}(\mathrm{ON}) \mid}$ are defined in Figure 19.
Device turn-off delay can establish an additional frequency limiting condition for an application other than TJMAX. $t_{D(O F F)}$ is important when controlling output ripple under a lightly loaded condition.
$f_{\text {MAX2 }}$ is defined by $f_{\text {MAX2 }}=\left(P_{D}-P_{C}\right) /\left(E_{\text {OFF }}+E_{O N}\right)$. The allowable dissipation (P_{D}) is defined by $\mathrm{P}_{\mathrm{D}}=$ ($\mathrm{T}_{\text {JMAX }}$ $\left.T_{C}\right) / R_{\theta J C}$. The sum of device switching and conduction losses must not exceed P_{D}. A 50% duty factor was used (Figure 13) and the conduction losses $\left(\mathrm{P}_{\mathrm{C}}\right)$ are approximated by $\mathrm{P}_{\mathrm{C}}=$ $\left(V_{C E} \times I_{C E}\right) / 2$. $E_{O N}$ and $E_{\text {OFF }}$ are defined in the switching waveforms shown in Figure 19. E_{ON} is the integral of the instantaneous power loss ($I_{C E} \times \mathrm{V}_{\mathrm{CE}}$) during turn-on and EOFF is the integral of the instantaneous power loss (ICE $\times V_{C E}$) during turn-off. All tail losses are included in the calculation for $\mathrm{E}_{\mathrm{OFF}}$; i.e. the collector current equals zero ($\mathrm{I}_{\mathrm{CE}}=0$).
\dagger Trademark Emerson and Cumming, Inc.

Packaging

LEAD \#	TERMINAL
Lead No. 1	Gate
Lead No. 2	Collector
Lead No. 3	Emitter
Term. 4 Mounting Flange	Collector

TO-251AA
3 LEAD JEDEC TO-251AA PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
A	0.086	0.094	2.19	2.38	-
A_{1}	0.018	0.022	0.46	0.55	3,4
b	0.028	0.032	0.72	0.81	3,4
$\mathrm{~b}_{1}$	0.033	0.040	0.84	1.01	3
$\mathrm{~b}_{2}$	0.205	0.215	5.21	5.46	3,4
c	0.018	0.022	0.46	0.55	3,4
D	0.270	0.290	6.86	7.36	-
E	0.250	0.265	6.35	6.73	-
e	0.090	TYP	2.28 TYP		5
e_{1}	0.180	BSC	4.57 BSC	5	
H_{1}	0.035	0.045	0.89	1.14	-
J_{1}	0.040	0.045	1.02	1.14	6
$\mathrm{~L}_{2}$	0.355	0.375	9.02	9.52	-
L_{1}	0.075	0.090	1.91	2.28	2

NOTES:

1. These dimensions are within allowable dimensions of Rev. C of JEDEC TO-251AA outline dated 9-88.
2. Solder finish uncontrolled in this area.
3. Dimension (without solder).
4. Add typically 0.002 inches (0.05 mm) for solder plating.
5. Position of lead to be measured 0.250 inches $(6.35 \mathrm{~mm})$ from bottom of dimension D.
6. Position of lead to be measured 0.100 inches $(2.54 \mathrm{~mm})$ from bottom of dimension D.
7. Controlling dimension: Inch.
8. Revision 2 dated 10-95.

Packaging (Continued)

TO-252AA
SURFACE MOUNT JEDEC TO-252AA PLASTIC PACKAGE

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	
A	0.086	0.094	2.19	2.38	-
A_{1}	0.018	0.022	0.46	0.55	4,5
b	0.028	0.032	0.72	0.81	4,5
$\mathrm{~b}_{1}$	0.033	0.040	0.84	1.01	4
$\mathrm{~b}_{2}$	0.205	0.215	5.21	5.46	4,5
$\mathrm{~b}_{3}$	0.190	-	4.83	-	2
c	0.018	0.022	0.46	0.55	4,5
D	0.270	0.290	6.86	7.36	-
E	0.250	0.265	6.35	6.73	-
e	0.090 TYP		2.28 TYP	7	
e_{1}	0.180 BSC	4.57	BSC	7	
H_{1}	0.035	0.045	0.89	1.14	-
J_{1}	0.040	0.045	1.02	1.14	-
L	0.100	0.115	2.54	2.92	-
L_{1}	0.020	-	0.51	-	4,6
$\mathrm{~L}_{2}$	0.025	0.040	0.64	1.01	3
$\mathrm{~L}_{3}$	0.170	-	4.32	-	2
NOTES					

NOTES:

1. These dimensions are within allowable dimensions of Rev. B of JEDEC TO-252AA outline dated 9-88.
2. L_{3} and b_{3} dimensions establish a minimum mounting surface for terminal 4.
3. Solder finish uncontrolled in this area.
4. Dimension (without solder).
5. Add typically 0.002 inches $(0.05 \mathrm{~mm})$ for solder plating.
6. L_{1} is the terminal length for soldering.
7. Position of lead to be measured 0.090 inches $(2.28 \mathrm{~mm})$ from bottom of dimension D.
8. Controlling dimension: Inch.
9. Revision 5 dated 10-95.

Packaging (Continued)
TO-252AA
16 mm TAPE AND REEL

All Harris Semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries.

Sales Office Headquarters

For general information regarding Harris Semiconductor and its products, call 1-800-4-HARRIS

NORTH AMERICA
Harris Semiconductor
P. O. Box 883, Mail Stop 53-210

Melbourne, FL 32902
TEL: 1-800-442-7747
(407) 729-4984

FAX: (407) 729-5321

EUROPE
Harris Semiconductor
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

ASIA
Harris Semiconductor PTE Ltd.
No. 1 Tannery Road
Cencon 1, \#09-01
Singapore 1334
TEL: (65) 748-4200
FAX: (65) 748-0400

