New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

IRF130

REPETITIVE AVALANCHE AND dv/dt RATED HEXFET[®]TRANSISTORS

Product Summary

Part Number	BVDSS	RDS(on)	ID
IRF130	100V	0.18Ω	14A

Features:

- Repetitive Avalanche Ratings
- Dynamic dv/dt Rating
- Hermetically Sealed
- Simple Drive Requirements
 - Ease of Paralleling

Absolute Maximum Ratings

	Parameter		Units
$I_{D} @ V_{GS} = 0V, T_{C} = 25^{\circ}C$	Continuous Drain Current	14	
$I_{D} @ V_{GS} = 0V, T_{C} = 100^{\circ}C$	Continuous Drain Current	9.0	A
IDM	Pulsed Drain Current ①	56	
$P_{D} @ T_{C} = 25^{\circ}C$	Max. Power Dissipation	75	W
	Linear Derating Factor	0.60	W/°C
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy 2	75	mJ
I _{AR}	Avalanche Current ①	14	A
EAR	Repetitive Avalanche Energy ①	7.5	mJ
dv/dt	Peak Diode Recovery dv/dt 3	5.5	V/ns
ТЈ	Operating Junction	-55 to 150	
T _{STG}	Storage Temperature Range		°C
	Lead Temperature	300 (0.063 in. (1.6mm) from case for 10s)	
	Weight	11.5(typical)	g

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

IRF130

		M:-	Tun	Mar	Unite	Test Conditions
	Parameter	Min	Тур	IVIAX	Units	
BVDSS	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 1.0mA$
$\Delta BV_{DSS}/\Delta T_J$	Temperature Coefficient of Breakdown Voltage		0.13		V/ºC	Reference to 25°C, $I_D = 1.0 \text{mA}$
RDS(on)	Static Drain-to-Source On-State			0.18	Ω	$V_{GS} = 10V, I_D = 9.0A$
	Resistance		—	0.21	52	$V_{GS} = 10V, I_D = 14A$
VGS(th)	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
gfs	Forward Transconductance	4.6	—		S (V)	$V_{DS} > 15V, I_{DS} = 9.0A$
IDSS	Zero Gate Voltage Drain Current			25		V _{DS} =80V, V _{GS} =0V
			·	250	μA	$V_{DS} = 80V$
						$V_{GS} = 0V, T_J = 125^{\circ}C$
IGSS	Gate-to-Source Leakage Forward			100	nA	$V_{GS} = 20V$
IGSS	Gate-to-Source Leakage Reverse	_	—	-100		$V_{GS} = -20V$
Qg	Total Gate Charge	12		35		V_{GS} =10V, ID=14A
Qgs	Gate-to-Source Charge	2.5	—	10	nC	$V_{DS} = 50V$
Qgd	Gate-to-Drain ('Miller') Charge	5.0		15		
td(on)	Turn-On Delay Time	—		35		$V_{DD} = 50V, I_D = 14A,$
t _r	Rise Time		—	80	ns	$R_{G} = 7.5\Omega$
td(off)	Turn-Off Delay Time		[60		
tf	Fall Time		—	45		
$L_{S} + L_{D}$	Total Inductance		6.1		nH	Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package)
Ciss	Input Capacitance		650			$V_{GS} = 0V, V_{DS} = 25V$
Coss	Output Capacitance	<u> </u>	250] pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance		44	—		

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter		Min	Тур	Max	Units	Test Conditions
IS	Continuous Source Current (B	ody Diode)			14	A	
ISM	Pulse Source Current (Body D	iode) ①			56		
VSD	Diode Forward Voltage	- 11-11-11-11-11-11-11-11-11-11-11-11-11		_	1.5	V	$T_j = 25^{\circ}C, I_S = 14A, V_{GS} = 0V$
trr	Reverse Recovery Time				300	nS	$T_j = 25^{\circ}C, I_F = 14A, di/dt \le 100A/\mu s$
QRR	Reverse Recovery Charge			-	3.0	μC	$V_{DD} \le 50V$ (4)
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_{S} + L_{D}$.					

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
R _{thJC}	Junction to Case			1.67	°C/W	
RthJA	Junction to Ambient			30	-C/W	Typical socket mount

TO3 Package.

• ••••