New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

REPETITIVE AVALANCHE AND dv/dt RATED HEXFET[®]TRANSISTORS THRU-HOLE (TO-204AA/AE)

Product Summary

Part Number	BVDSS	RDS(on)	ID
IRF460	500V	0.27Ω	21

The HEXFET transistors also feature all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.

They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high energy pulse circuits.

Features:

- Repetitive Avalanche Ratings
- Dynamic dv/dt Rating
- Hermetically Sealed
- Simple Drive Requirements
- Ease of Paralleling

	Parameter		Units	
$I_D @ V_{GS} = 0V, T_C = 25^{\circ}C$ Continuous Drain Current		21		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		14	A	
		84	1	
PD @ TC - 25°C	Max. Power Dissipation	300	W	
	Linear Derating Factor	2.4	W/°C	
VGS	Gate-to-Source Voltage	±20	V	
EAS	Single Pulse Avalanche Energy 2	1200	mJ	
I _{AR}	Avalanche Current ①	21	A	
EAR	Repetitive Avalanche Energy ①	30	mJ	
dv/dt	Peak Diode Recovery dv/dt 3	3.5	V/ns	
Тј	Operating Junction	-55 to 150	ſ	
TSTG	Storage Temperature Range		°C	
	Lead Temperature	300 (0.063 in. (1.6mm) from case for 10s)		
	Weight	11.5(typical)	g	

Absolute Maximum Ratings

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

IRF460 500V, N-CHANNEL

IRF460

,

		(specifica)		
	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	500			V	$V_{GS} = 0V, I_{D} = 1.0mA$
ΔBV _{DSS} /ΔTj	Temperature Coefficient of Breakdown Voltage		0.78		V/°C	Reference to 25°C, $ID = 1.0mA$
RDS(on)	Static Drain-to-Source On-State	a. 1		0.27	0	$V_{GS} = 10V, I_{D} = 14A$ @
	Resistance	_		0.31	Ω	$V_{GS} = 10V, I_D = 21A$ (4)
VGS(th)	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, ID =250 μ A
gfs	Forward Transconductance	13			S (75)	$V_{DS} > 15V, I_{DS} = 14A$ @
IDSS	Zero Gate Voltage Drain Current			25		VDS=400V,VGS=0V
			_	250	μΛ	V _{DS} =400V
						$V_{GS} = 0V, T_J = 125^{\circ}C$
IGSS	Gate-to-Source Leakage Forward			100		$V_{GS} = 20V$
IGSS	Gate-to-Source Leakage Reverse		_	-100	nA	$V_{GS} = -20V$
Qg	Total Gate Charge	84		190		$V_{GS} = 10V, ID=21A$
Qgs	Gate-to-Source Charge	12		27	nC	$V_{DS} = 250V$
Qgd	Gate-to-Drain ('Miller') Charge	60		135		
td(on)	Turn-On Delay Time			35		V _{DD} =250V, I _D =21A,
tr	Rise Time		** *** *	120		$R_{G} = 2.35\Omega$
۲d(off)	Turn-Off Delay Time			130	ns	
tf	Fall Time	_		98		
$L_{S} + L_{D}$	Total Inductance		6.1		nH	Measured from drain lead (6mm/0.25in, from package) to source lead (6mm/0.25in, from package)
Ciss	Input Capacitance		4300			$V_{GS} = 0V, V_{DS} = 25V$
Coss	Output Capacitance		1000		рF	f = 1.0 MHz
Crss	Reverse Transfer Capacitance	_	250			

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter	Min	Тур	Max	Units	Test Conditions	
IS	Continuous Source Current (Body Dio	de) —		21	A		
ISM	Pulse Source Current (Body Diode) ①		-	84			
VSD	Diode Forward Voltage			1.8	v	$T_j = 25^{\circ}C, I_S = 21A, V_{GS} = 0V$ (3)	
trr	Reverse Recovery Time		_	580	nS	$T_j = 25^{\circ}C$, $I_F = 21A$, $di/dt \le 100A/\mu s$	
Qrr	Reverse Recovery Charge	· ·	_	8.1	μC	$V_{DD} \le 50V$ (4)	
ton	Forward Turn-On Time Intrinsi	ic turn-on time	is negli	gible. Tu	um-on sp	eed is substantially controlled by $L_S + L_D$.	

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction to Case		—	0.42	oc/w	
RthJA	Junction to Ambient			30	°C/W	Typical socket mount