New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

IRFP440R, IRFP441R, IRFP442R, IRFP443R

Avalanche Energy Rated N-Channel Power MOSFETs

8A and 7A, 500V-400V $r_{\text{DS}}(\text{on}) = 0.85\Omega$ and 1.1Ω

Features:

- Single pulse avalanche energy rated
- SOA is power-dissipation limited
- Nanosecond switching speeds
- Linear transfer characteristics
- High input impedance

The IRFP440R, IRFP441R, IRFP442R and IRFP443R are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. These are n-channel enhancement-mode silicon-gate power field-effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits.

The IRFP-types are supplied in the JEDEC TO-247 plastic. package.

N-CHANNEL ENHANCEMENT MODE

TERMINAL DIAGRAM

TERMINAL DESIGNATION

JEDEC TO-247

Absolute Maximum Ratings

	Parameter	IRFP440R	IRFP441R	IRFP442R	IRFP443R 450	Units V
VDS	Drain - Source Voltage ①	500	450	500		
VDGR	Drain - Gate Voltage (R _{GS} = 20 KΩ) ①	500	450	500	450	V
$I_D @ T_c = 25^{\circ}C$	Continuous Drain Current	8.0	8.0 8.0		7.0	A
$I_{D} @ T_{C} = 100^{\circ}C$	Continuous Drain Current	5.0	5.0	4.0	4.0	A
Том	Pulsed Drain Current ③	32	32	28	28	A
V _{GS}	Gate - Source Voltage		±20		V	
$P_{D} @ T_{c} = 25^{\circ}C$	Max. Power Dissipation		125 (See Fig. 14)			
	Linear Derating Factor		W/°C			
E _{no}	Single Pulse Avalanche Energy Rating ④		mj			
TJ Tetg	Operating Junction and Storage Temperature Range		-55 to 150			°C
	Lead Temperature	300 (0.0	300 (0.063 in. (1.6mm) from case for 10s)			°C

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

IRFP440R, IRFP441R, IRFP442R, IRFP443R

Min. Typ. Max. Units **Test Conditions** Туре Parameter IRFP440R IRFP442R Drain - Source Breakdown Voltage BVDB ۷ $V_{OB} = 0V$ 500 _ _ IRFP441R 450 ۷ $l_D = 250 \mu A$ _ _ ٧ $V_{D8} = V_{08}$, $I_D = 250 \mu A$ Vasen Gate Threshold Voltage 4.0 ALL 2.0 _ Gate-Source Leakage Forward ALL 100 nA $V_{GB} = 20V$ lass --Gate-Source Leakage Reverse ALL _ -100 nA $V_{QB} = -20V$ lass Zero Gate Voltage Drain Current 250 μA Vps = Max. Rating, Vos = 0V _ loss ALL Vps = Max. Rating x 0.8, Vqs = 0V, Tc = 125°C 1000 μA IRFP440R On-State Drain Current @ (Dimi 8.0 A _ _ VDE > IDioni X RDBioni mak, Vas = 10V IRFP442R 7.0 _ _ A IRFP443R Static Drain-Source On-State IFIFP440R Rosion 0.85 Ω _ 0.8 Resistance 2 IRFP441R $V_{ce} = 10V$, $I_{c} = 4.0A$ IREP442R 1.0 1.1 Ω _ IRFP443R S(ប) VDS > IDION X ROBIONIMEN, ID = 4.0A 6.5 Forward Transconductance 2 4.0 _ Q1a ALL Cus Input Capacitance ALL _ 1225 pF $V_{GS} = 0V, V_{DS} = 25V, f = 1.0 \text{ MHz}$ **Output Capacitance** ALL 200 pF Com _ See Fig. 10 85 pF Cree Reverse Transfer Capacitance ALL _ 35 $V_{00} \simeq 200V$, $I_0 = 4.0A$, $Z_0 = 4.7\Omega$ ALL 17 18 Turn-On Delay Time talon See Fig. 17 (MOSFET switching times are essentially 5 15 ns t **Rise Time** ALL -42 90 tolom Turn-Off Delay Time ALL пз independent of operating temperature.) 14 30 ns t, Fail Time ALL $V_{\text{GS}} = 10V$, $I_D = 10A$, $V_{\text{DS}} = 0.8$ Max. Rating. See Fig. 18 for test circuit. (Gate charge is essentially independent of operating Total Gate Charge (Gate-Source Plus Gate-Drain) Q, ALL _ 42 60 nC Gate-Source Charge ALL 20 _ nC -Q temperature.) 22 nC Gate-Drain ("Miller") Charge Qgd ALL _ Measured between Modified MOSFET 5.0 nH Lo Internal Drain Inductance ALL _ _ the contact screw on header that is closer to symbol showing the internal device D inductances source and gate pins õ and center of die. 12.5 Measured from the Internal Source Inductance ALL ---nH Ls _ ιġ 50 source pin, 6 mm (0.25 in.) from header and source ds bonding pad.

Electrical Characteristics @ T_c = 25°C (Unless Otherwise Specified)

Thermal Resistance

R	Junction-to-Case	ALL	-		1.0	°C/W	
RttCS	Case-to-Sink	ALL	-	0.1	-	°C/W	Mounting surface flat, smooth, and greased.
R _{th} JA	Junction-to-Ambient	ALL	—	-	30	°C/W	Free Air Operation

Source-Drain Diode Ratings and Characteristics

ls	Continuous Source Current (Body Diode)	IRFP440R IRFP441R	_	-	8.0	A	Modified MOSFET symbol showing the integral
		IRFP442R IRFP443R	-	-	7.0	A	reverse P-N junction rectifier.
Ism	Pulse Source Current (Body Diode) ③	IRFP440R IRFP441R	-	-	32	A	
		IRFP442R IRFP443R	-	-	28	A	5 9763 9765
Vsp	Diode Forward Voltage 2	IRFP440R IRFP441R	-	-	2.0	v	$T_{c} = 25^{\circ}C$, $I_{s} = 8.0A$, $V_{GS} = 0V$
		IRFP442R IRFP443R	-	-	1.9	v	$T_c = 25^{\circ}C$, $I_s = 7.0A$, $V_{GS} = 0V$
t _{er}	Reverse Recovery Time	ALL	-	1100		ns	$T_J = 150^{\circ}C$, $I_F = 8.0A$, $dI_F/dt = 100A/\mu s$
Qaa	Reverse Recovered Charge	ALL	-	6.4	-	μC	$T_J = 150^{\circ}C$, $I_F = 8.0A$, $dI_F/dt = 100A/\mu s$
ton	Forward Turn-on Time	ALL	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_s + L_b$.				

(1) $T_J = 25^{\circ}C$ to 150°C. (2) Pulse Test: Pulse width \leq 300 μ s, Duty Cycle \leq 2%.

 $3 \label{eq:spectral_s$