HiPerFET ${ }^{\text {m }}$ Power MOSFET

N -Channel Enhancement Mode
High dv/dt, Low t_{r}, $\mathrm{HDMOS}^{\text {TM }}$ Family

Symbol	Test Conditions		Maximum Ratings	
$\mathrm{V}_{\mathrm{DSS}}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$		100	V
$V_{\text {DGR }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$		100	V
$\mathrm{V}_{\text {Gs }}$	Continuous		± 20	V
$\mathrm{V}_{\text {GSM }}$	Transient		± 30	V
$\mathrm{I}_{\mathrm{D} 5}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	67N10	67	A
		75N10	75	A
$I_{\text {DM }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, pulse width limited by T_{JM}	67N10	268	A
		75N10	300	A
$I_{\text {AR }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	67N10	67	A
		75N10	75	A
$\mathrm{E}_{\text {AR }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		30	mJ
dv/dt	$\begin{aligned} & \mathrm{I}_{S} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{di} / \mathrm{dt} \leq 100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~T}_{J} \leq 150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=2 \Omega \end{aligned}$		5	V/ns

\mathbf{P}_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	300	W
\mathbf{T}_{J}		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
\mathbf{T}_{JM}		150	${ }^{\circ} \mathrm{C}$
$\mathbf{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
\mathbf{M}_{d}	Mounting torque	$1.13 / 10$	$\mathrm{Nm} / \mathrm{lb} . i n$
Weight	$\mathrm{TO}-204=18 \mathrm{~g}, \mathrm{TO}-247=6 \mathrm{~g}$		
Maximum lead temperature for soldering	300	${ }^{\circ} \mathrm{C}$	
1.6 mm (0.062 in.) from case for 10 s			

Symbol	Test Conditions	Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)		
		Min.	Typ.	Max.
$\mathrm{V}_{\text {DSs }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	100		V
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$	2.0		4 V
$\mathrm{I}_{\text {Gss }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{DS}}=0$			$\pm 100 \mathrm{nA}$
$\mathrm{I}_{\text {DSS }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0.8 \mathrm{~V}_{\mathrm{DSS}} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{rl} 250 & \mu \mathrm{~A} \\ 1 & \mathrm{~mA} \end{array}$
$\mathrm{R}_{\text {DS(on) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{I}_{\mathrm{D} 25}$ Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, d	67N10 75N10 cycle $\delta \leq 2$ \%		$\begin{array}{ll} \hline 0.025 & \Omega \\ 0.020 & \Omega \end{array}$

$V_{\text {DSs }}$	$\mathrm{I}_{\mathrm{D25}}$	$R_{\text {DS(on) }}$	t_{π}
100 V	67 A	$25 \mathrm{~m} \Omega$	200 ns
100 V	75 A	$20 \mathrm{~m} \Omega$	200 ns

Features

- International standard packages
- Low $\mathrm{R}_{\text {DS (on) }}$ HDMOS $^{\text {TM }}$ process
- Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
- easy to drive and to protect
- Fast intrinsic Rectifier

Applications

- DC-DC converters
- Synchronous rectification
- Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- AC motor control
- Temperature and lighting controls
- Low voltage relays

Advantages

- Easy to mount with 1 screw (TO-247) (isolated mounting screw hole)
- Space savings
- High power density

Symbol
Test Conditions

Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Min. ${ }^{\text {Typ. }}$ Max.

		Min.	Typ	Max.	
$\mathrm{g}_{\text {ts }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{I}_{\mathrm{D25}}$, pulse test	25	30		S
$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\mathrm{rss}} \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		$\begin{array}{r} 4500 \\ 1600 \\ 800 \end{array}$		pF pF pF
$\begin{aligned} & t_{d(o n)} \\ & t_{r} \\ & t_{\text {dofl }} \\ & t_{i} \end{aligned}$	$\left\{\begin{array}{l}\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \mathrm{~V}_{\text {DSS }}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{I}_{\mathrm{D} 25} \\ \mathrm{R}_{\mathrm{G}}=2 \Omega, \text { (External) }\end{array}\right.$		20 60 80 60	$\begin{array}{r} 30 \\ 110 \\ 110 \\ 90 \end{array}$	ns ns ns ns
$\begin{aligned} & Q_{g(o n)} \\ & Q_{g s} \\ & Q_{g d} \end{aligned}$	$\} \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{I}_{\mathrm{D} 25}$		$\begin{array}{r} 180 \\ 36 \\ 85 \end{array}$	260 70 160	nC nC nC
$\begin{aligned} & \mathbf{R}_{\mathrm{thsc}} \\ & \mathbf{R}_{\mathrm{thck}} \\ & \hline \end{aligned}$			0.25	0.42	$\begin{aligned} & \text { K/W } \\ & \text { K/W } \end{aligned}$

Source-Drain Diode
Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)
Symbol Test Conditions

$\mathrm{I}_{\text {s }}$	$\mathrm{V}_{\mathrm{GS}}=0$	67N10 75N10	67 75	A
I_{sm}	Repetitive; pulse width limited by T_{JM}	67N10 75N10	$\begin{aligned} & 268 \\ & 300 \end{aligned}$	A
$\mathrm{V}_{\text {sD }}$	$I_{F}=I_{S}, V_{G S}=0 \mathrm{~V},$ Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\delta \leq 2 \%$		1.75	v
t_{r}	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=25 \mathrm{~A},- \text {-di/dt }=100 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~V}_{\mathrm{R}}=25 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{1}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 200 \\ & 300 \end{aligned}$	ns ns

IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS MOSFETS and IGBTs are covered by one or more of the following U.S. patents:

TO-247 AD (IXFH) Outline

TO-204AE(IXFM) Outline

2. SOURCE

CASE - DRAIN

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	.250	.450	6.4	11.4
A1	.060	.135	1.53	3.42
$\varnothing \mathrm{~b}$.057	.063	1.45	1.60
$\varnothing \mathrm{D}$.875		22.22
e	.420	.440	10.67	11.17
e 1	.205	.225	5.21	5.71
L	.440	.480	11.18	12.19
$\emptyset p$.151	.165	3.84	4.19
$\phi \mathrm{p} 1$.151	.165	3.84	4.19
Q	1.187	BSC	30.15	BSC
R	.495	.525	12.58	13.33
R1	.131	.188	3.33	4.77
S	.655	.675	16.64	17.14

Fig.1. Output Characteristics

Fig. 3. Rds(on) vs. Drain Current

Fig. 5. Drain Current vs. Case Temperature

Fig. 2. Input Admittance

Fig. 4. Temperature Dependence of Drain to Source Resistance

Fig. 6. Temperature Dependence of Breakdown Voltage and Threshold Voltage

Fig. 7. Gate Charge

Fig. 9. Capacitance Curves

Fig. 8. Forward Bias Safe Operating Area

Fig. 10. Source Current vs. Source to Drain Voltage

Fig. 11. Transient Thermal Impedance

