20 STERN AVE.
SPRINGFIELD, NEW JERSEY 07081
U.S.A.

$$
\begin{aligned}
& V_{\text {CEO }}=40 \mathrm{~V} \\
& I_{C}=50 \mathrm{~mA}
\end{aligned}
$$

CASE 32

CASE 33

(TO-89)

Dual PNP silicon annular transistors, especially designed for low-level, differential amplifier applications.

PIN CONNECTIONS
(BOTTOM VIEW)
MD3250F, AF MD3251F, AF

MAXIMUM RATINGS (each side) ($\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value		Unit
Collector-Base Voltage	V_{CB}	50		Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	40		Vde
Emitter-Base Voltage	$\mathrm{V}_{\text {EB }}$	5		Vdc
DC Collector Current	${ }^{\text {I }} \mathrm{C}$	50		mAdc
Junction Temperature	T_{J}	+200		${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +200		C
		One Side	Both Sides	
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ TO-5 Case Derate above $25^{\circ} \mathrm{C}$ Flat Pack Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{aligned} & 500 \\ & 2.9 \\ & 250 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \\ & 3.4 \\ & 350 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ TO-5 Case Derate above $25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{gathered} 1.2 \\ 6.85 \end{gathered}$	$\begin{gathered} 2.0 \\ 11.42 \end{gathered}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{~m}}$

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. V.I Semi-Conductors encourages customers to verify that datasheets are current before placing urders.

MD3250, A, F, AF and MD3251, A, F, AF (continued)

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{BV}_{\mathrm{CBO}}$	50	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(I_{C}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	${ }^{\mathrm{BV}} \mathrm{CEO}$	40	70	-	Vdc
$\begin{aligned} & \text { Emitter-Base Breakdown Voltage } \\ & \left(I_{E}=10 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{C}}=0\right) \end{aligned}$	$\mathrm{BV}_{\text {EBO }}$	5	-	-	Vde
$\begin{aligned} & \text { Collector Cutofi Current } \\ & \left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{Vdc}, \mathrm{I}_{E}=0\right) \\ & \left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{Vdc}, \mathrm{I}_{E}=0, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\right) \end{aligned}$	${ }^{\text {I }} \mathrm{CBO}$	-	-	$\left\|\begin{array}{c} 0.01 \\ 10 \end{array}\right\|$	$\mu \mathrm{Adc}$
$\begin{aligned} & \text { Emitter Cutoff Current } \\ & \left(\mathrm{V}_{\mathrm{EB}}=3 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right) \end{aligned}$	${ }^{\text {Ebo }}$	-	-	20	nAds

ON CHARACTERISTICS

$\begin{aligned} & \text { DC Forward Current Transfer Ratio* } \\ & \left(I_{C}=10 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}-5 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=1 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right) \\ & \left(I_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right) \end{aligned}$	MD3250, MD32504 MD3251, MD3251A MD3250, MD3250A MD3251, MD3251A MD3250, MD3250A MD3251, MD3251A MD3250, MD3250A MD3251, MD3251A MD3250, MD3250A MD3251, MD3251A MD3250, MD3250A MD3251, MD3251A	${ }^{\mathrm{h}} \mathrm{FE}{ }^{*}$	$\begin{array}{r} 25 \\ 50 \\ 50 \\ 100 \\ 25 \\ 50 \\ 50 \\ 50 \\ 100 \\ 50 \\ 100 \\ 15 \\ 30 \end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|c} -- \\ - \\ 150 \\ 300 \\ - \\ - \\ 150 \\ 300 \\ -- \\ - \\ - \\ \hline \end{array}$	--
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{mAdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{mAdc}\right) \end{aligned}$		$V_{\text {CE(sat) }}{ }^{*}$			$\begin{aligned} & 0.25 \\ & 0.50 \end{aligned}$	V dc
$\begin{aligned} & \text { Base-Emitter Saturation Voltage* } \\ & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{mAdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{mAdc}\right) \end{aligned}$		$\mathrm{V}_{\mathrm{BE}(\text { sat })}{ }^{*}$		-	$\begin{aligned} & 0.9 \\ & 1.2 \end{aligned}$	Vdc

SMALL SIGNAL CHARACTERISTICS

```Current-Gain - Bandwidth Product ( }\mp@subsup{I}{C}{}=10\textrm{mAdc},\mp@subsup{V}{CE}{}=20\textrm{Vdc},\textrm{f}=100\textrm{MHz}```	$\begin{array}{ll}\text { MD3250, } & \text { MD3250A } \\ \text { MD3251, } & \text { MD3251A }\end{array}$	${ }^{\mathrm{f}} \mathrm{T}$	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	-	-	MHz
$\begin{aligned} & \text { Output Capacitance } \\ & \left(\mathrm{V}_{\mathrm{CB}}=5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=100 \mathrm{kHz}\right) \end{aligned}$		${ }^{\text {cob }}$	-	$\cdots$	6	pF
$\begin{aligned} & \text { Input Capacitance } \\ & \quad\left(\mathrm{V}_{\mathrm{BE}}=0.5 \mathrm{Vdc}, I_{C}=0, f=100 \mathrm{kHz}\right) \end{aligned}$		$C_{i b}$	-	$\cdots$	8	pF
$\begin{aligned} & \text { Small Signa! Current Gain } \\ & \left(1_{C}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}-10 \mathrm{~V},\{=1 \mathrm{kHz})\right. \end{aligned}$	MD3250, MD3250A MD3251, MD3251A	${ }^{\text {rim }}$	$\begin{array}{r} 50 \\ 100 \end{array}$	-	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	$\cdots$
$\begin{aligned} & \text { Voltage Feedback Ratio } \\ & \left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}\right) \end{aligned}$	$\begin{array}{ll} \text { MD3250, } & \text { MD3250A } \\ \text { MD3251, } & \text { MD3251A } \end{array}$	$h_{r e}$	-	-	10 20	X10-4
Input Impedance $\left(I_{C}=1.0 \mathrm{~mA}, V_{C E}=10 \mathrm{~V}, \mathrm{r}=1 \mathrm{kHz}\right)$	$\begin{array}{ll} \text { MD3250, } & \text { MD3250A } \\ \text { MD3251, } & \text { MD3251A } \\ \hline \end{array}$	$h_{\text {ie }}$	1	-	6 12	kohms
$\begin{aligned} & \text { Output Admittance } \\ & \qquad\left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}\right) \end{aligned}$	$\begin{array}{ll} \mathrm{MD} 3250, & \text { MD3250A } \\ \text { MD3251, } & \text { MD3251A } \end{array}$	$h_{\text {oe }}$	4 10	$\cdots$	40 60	$\mu \mathrm{mhos}$
Wide Band Noise Figure $\left(I_{C}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=3 \mathrm{kohm}\right.$   Noise Bandwidth 10 cps to 15.7 kHz )	$\begin{aligned} & \text { MD3250, MD3250A } \\ & \text { MD3251, MD3251A } \end{aligned}$	NF	-	-	4 3	dB

MATCHING CHARACTERISTICS (Types MD3250A and MD3251A only)

$\begin{aligned} & \text { DC Current Gain Ratio*** } \\ & \left(\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{AdC} \text { and } 1 \text { madc, } \mathrm{V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right) \end{aligned}$	MD3250A, MD3251A	${ }^{h_{\text {FE } 2} / h^{\text {FE } 2}{ }^{* *}}$	0.9	-	1.0	
$\begin{aligned} & \text { Base Voltage Differential } \\ & \left(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \text { to } 10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right) \\ & \text { (I }_{\mathrm{C}}=100 \mu \mathrm{Adc}, \mathrm{v}_{\mathrm{CE}}=5 \mathrm{Vdc} \text { ) } \end{aligned}$	MD3250A, MD3251A MD3250A, MD3251A	$\left\|\mathrm{v}_{\mathrm{BE} 1}{ }^{-\mathrm{V}_{\mathrm{BE} 2}}\right\|$	-	--	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	mVdc
$\begin{aligned} & \text { Base Voltage Differential Change } \\ & \text { ( } I_{C}=100 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=-55 \text { to }+25^{\circ} \mathrm{C} \text { ) } \\ & \left(I_{\mathrm{C}}=100 \mu \mathrm{Adc}, \mathrm{v}_{\mathrm{CE}}=5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25 \text { to } 125^{\circ} \mathrm{C}\right) \end{aligned}$	MD3250A, MD3251A MD3250A, MD3251A	$\Delta\left(V_{B E 1}-V_{\text {BE2 }}\right)$	-	-	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	mVdc

