New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

мр**6001** мр**6002**

 $\begin{array}{c} \text{TELEPHONE: (973) 376-2922} \\ (212) 227-6005 \\ \textbf{V}_{CB} = 60 \, \textbf{V} \qquad \text{FAX: (973) 376-8960} \\ \textbf{I}_{C} = 300 \, \textbf{mA} \\ \textbf{P}_{D} = 500 \, \textbf{mW} \text{ one side} \\ 600 \, \textbf{mW} \text{ both sides} \end{array}$

Silicon annular complementary-pair dual transistor is designed for high-speed switching circuits, DC to VHF amplifier applications and complementary circuitry.

MAXIMUM RATINGS (each side) ($T_A = 25^{\circ}C$ unless otherwise specified) Test Conditions and Limits are given in magnitudes only. Care must be taken to insure the application of proper polarities for the NPN or PNP transistor, respectively.

Rating	Symbol	Value		Unit	
Collector-Base Voltage	v _{CB}	60		Vdc	
Collector-Emitter Voltage	v _{ceo}	30		Vdc	
Emitter-Base Voltage	V _{EB}	5		Vdc	
DC Collector Current (Limited by P _D)	^I C	300		mAdc	
Junction Temperature	тј	+200		°C	
Storage Temperature	T _{stg}	-65 to +200		°C	
		ONE SIDE	BOTH SIDES		
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	500 2.9	600 3.4	m₩ mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.2 6.83	2. 0 11. 43	W mW/°C	

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

CASE 32

MD6001, MD6002 (continued)

ELECTRICAL CHARACTERISTICS (each side) (TA = 25 °C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
CHARACTERISTICS					
Collector-Base Breakdown Voltage ($I_C = 10 \ \mu \text{Adc}, I_E = 0$)	<u></u>	вусво	60	_	Vdo
Collector-Emitter Breakdown Voltage* ($I_C = 10 \text{ mAdc}, I_B = 0$)		BV _{CEO} *	30		Vd
Emitter-Base Breakdown Voltage ($I_E = 10 \ \mu Adc, I_C = 0$)		BVEBO	5		Vd
Collector Cutoff Current $(V_{CE} = 50 \text{ Vdc}, V_{EB} = 3 \text{ Vdc})$ $(V_{CE} = 50 \text{ Vdc}, V_{EB} = 3 \text{ Vdc}, T_{A} = 150 \text{ Vdc}$	0°C)	^l CEX		0. 02 30	μAd
Base Cutoff Current ($V_{CE} = 50$ Vdc, $V_{EB} = 3$ Vdc)		I _{BL}		0.03	μAd
CHARACTERISTICS	_				
DC Current Gain* ($I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$)	MD6001 MD6002	^h FE*	20 35	-	
$(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MD6001 MD6002		25 50		
$(I_{C} = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MD6001 MD6002		35 75		
$(I_{C} = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MD6001 MD6002		40 100	120 300	
$(I_{C} = 150 \text{ mAdc}, V_{CE} = 1 \text{ Vdc})$	MD6001 MD6002		20 50		
$(I_C = 300 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MD6001 MD6002		20 30	=	
Base-Emitter Saturation Voltage* (I _C = 150 mAdc, I _B = 15 mAdc)		V _{BE(sat)} *	-	1.3	Vd
$(I_{C} = 300 \text{ mAdc}, I_{B} = 30 \text{ mAdc})$			-	2.0	
Collector-Emitter Saturation Voltage* (I _C = 150 mAdc, I _B = 15 mAdc)		V _{CE(sat)} *	-	0.4	Vo
$(I_C = 300 \text{ mAdc}, I_B = 30 \text{ mAdc})$				1.4	

DYNAMIC CHARACTERISTICS

Gain - Bandwidth Product ($I_C = 50 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz}$)		fr		200	MHz	
Collector Outpu (V _{CB} = 10 Vd	Collector Output Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E \simeq 0, f = 100 \text{ kHz}$)		C _{ob}	-	8	pF
Collector Input (V _{BE} = 2 Vdc	Collector Input Capacitance ($V_{BE} = 2 Vdc$, $I_{C} = 0$, $f = 100 \text{ kHz}$)		с _{ів}	_	30	pF
Delay Time	See Figure 1	$V_{CC} = 30 V, V_{BE(off)} = 0.5 V$	t _d		20	ns
Rise Time		$I_{C} = 150 \text{ mA}, I_{B1} = 15 \text{ mA}$	t _r		40	ns
Storage Time	See Figure 2	$V_{CC} = 30 \text{ V}, \text{ I}_{C} = 150 \text{ mA}$	t s		280	ns
Fall Time		$I_{B1} = I_{B2} = 15 \text{ mA}$	t _f	[70	ns