New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

MJ10000

20 AMPERE NPN SILICON

POWER DARLINGTON TRANSISTORS

350 VOLTS

Designer's™ Data Sheet SWITCHMODE Series NPN Silicon Power Darlington Transistor

The MJ10000 Darlington transistor is designed for high–voltage, high–speed, power switching in inductive circuits where fall time is critical. It is particularly suited for line operated switchmode applications such as:

- Switching Regulators
- Inverters
- Solenoid and Relay Drivers
- Motor Controls
- Deflection Circuits

100°C Performance Specified for:

Reversed Biased SOA with Inductive Loads Switching Times With Inductive Loads — 210 ns Inductive Fall Time (Typ) Saturation Voltages Leakage Currents

MAXIMUM RATINGS

Rating	Symbol	Value	Unit Vdc	
Collector-Emitter Voltage	VCEO	350		
Collector-Emitter Voltage	VCEX	400	Vdc	
Collector-Emitter Voltage	VCEV	450	Vdc	
Emitter Base Voltage	V _{EB}	8	Vdc	
Collector Current — Continuous — Peak (1)	IC ICM	20 30	Adc	
Base Current — Continuous — Peak (1)	I _B I _{BM}	2.5 5	Adc	
Total Power Dissipation @ T _C = 25°C @ T _C =100°C Derate above 25°C	PD	175 100 1	Watts	
Operating and Storage Junction Temperature Range	TJ, Tstg	-65 to +200	*C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{0JC}	1	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	ΤL	275	°C

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle \leq 10%.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

MJ10000

•

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (2)		·		<u> </u>	
Collector–Emitter Sustaining Voltage (Table 1) (I _C = 250 mA, I _B = 0, V _{clamp} = Rated V _{CEO}) MJ10000	VCEO(sus)	350			Vdc
Collector-Emitter Sustaining Voltage (Table 1, Figure 12) $I_C = 2 A$, V_{clamp} = Rated V_{CEX} , $T_C = 100^{\circ}C$ MJ10000 $I_C = 10 A$, V_{clamp} = Rated V_{CEX} , $T_C = 100^{\circ}C$ MJ10000	VCEX(sus)	400 275			Vdc
Collector Cutoff Current (V _{CEV} = Rated Value, V _{BE(off)} = 1.5 Vdc) (V _{CEV} = Rated Value, V _{BE(off)} = 1.5 Vdc, T _C = 150°C)	ICEV		-	0.25 5	mAdo
Collector Cutoff Current (VCE = Rated VCEV, RBE = 50 Ω , TC = 100°C)	ICER		-	5	mAdo
Emitter Cutoff Current (V _{EB} = 8 Vdc, I _C = 0)	IЕВО		_	150	mAdo
SECOND BREAKDOWN	·····		•	•	
Second Breakdown Collector Current with base forward biased	I _{S/b}		See Figure 1	1	Adc
DN CHARACTERISTICS (2)		i			
DC Current Gain (I _C = 5 Adc, V_{CE} = 5 Vdc) (I _C = 10 Adc, V_{CE} = 5 Vdc)	hfe	50 40	-	600 400	-
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ Adc}$, $I_B = 400 \text{ mAdc}$) ($I_C = 20 \text{ Adc}$, $I_B = 1 \text{ Adc}$) ($I_C = 10 \text{ Adc}$, $I_B = 400 \text{ mAdc}$, $T_C = 100^{\circ}\text{C}$)	VCE(sat)	-		1.9 3 2	Vdc
Base–Emitter Saturation Voltage (I _C = 10 Adc, I _B = 400 mAdc) (I _C = 10 Adc, I _B = 400 mAdc, T _C = 100°C)	V _{BE(sat)}			2.5 2.5	Vdc
Diode Forward Voltage (1) (I _F = 10 Adc)	Vf		3	5	Vdc
OYNAMIC CHARACTERISTICS					L
Small–Signal Current Gain (I _C = 1.0 Adc, V _{CE} = 10 Vdc, f _{test} = 1 MHz)	h _{fe}	10		_	_
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 100 kHz)	Cob	100		325	pF
WITCHING CHARACTERISTICS					L
Resistive Load (Table 1)	-				·
$ \begin{array}{ccc} \text{Delay Time} & (\text{V}_{CC} = 250 \text{ Vdc}, \text{ I}_{C} = 10 \text{ A}, \\ \text{Rise Time} & \text{I}_{B1} = 400 \text{ mA}, \text{ V}_{BE(off)} = 5 \text{ Vdc}, \text{ t}_{p} = 50 \mu\text{s}, \\ \text{Storage Time} & \text{Duty Cycle} \leq 2\%) \\ \text{Fall Time} \end{array} $	td t _r ts tf		0.12 0.20 1.5 1.1	0.2 0.6 3.5 2.4	μs μs μs μs
Inductive Load, Clamped (Table 1)		1			
Storage Time $(I_C = 10 \text{ A(pk)}, V_{Clamp} = \text{Rated } V_{CEX}, I_{B1} = 400 \text{ mA},$ Crossover Time $V_{BE(off)} = 5 \text{ Vdc}, T_C = 100^{\circ}\text{C})$	t _{sv} t _c	_	3.5 1.5	5.5 3.7	μs μs
Storage Time $(I_C = 10 \text{ A(pk)}, V_{clamp} = \text{Rated } V_{CEX}, I_{B1} = 400 \text{ mA},$ Crossover Time $V_{BE(off)} = 5 \text{ Vdc}, T_C = 25^{\circ}C)$	t _{sv} t _c	_	1.0 0.7		μs μs