New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

SWITCHMODE II SERIES NPN SILICON POWER TRANSISTORS

The MJ13080 and MJ13081 transistors are designed for highvoltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switchmode applications such as:

- Switching Regulators
- Inverters
- Solenoid and Relay Drivers
- Motor Controls
- Deflection Circuits

Fast Turn-Off Times

100 ns Inductive Fall Time @ 25°C (Typ) 150 ns inductive Crossover Time @ 25°C (Typ) 400 ns Inductive Storage Time @ 25°C (Typ)

Operating Temperature Range -65 to +200°C

100°C Performance Specified for:

Reverse-Biased SOA with Inductive Loads Switching Times with Inductive Loads

Saturation Voltages

Leakage Currents

8 AMPERE

NPN SILICON POWER TRANSISTORS

400 AND 450 VOLTS

"Worst Case" Conditions

The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Limit data -- representing device characteristics boundaries — are given to facilitate "worst case" design.

MAXIMIM BATINGS

Rating	Symbol	MJ13080	MJ13081	Unit
Collector-Emitter Voltage	VCEO	400	450	Vdc
Collector-Emitter Voltage	VCEV	650	750	Vdc
Emitter Base Voltage	VEB	6.0		Vdc
Collector Current — Continuous — Peak (1)	I _C	8.0 12		Adc
Base Current — Continuous — Peak (1)	IB IBM	3.0 6.0		Adc
Total Power Dissipation @ T _C = 25°C @ T _C = 100°C Derate above 25°C	PD	150 85.5 0.86		Watts W/°C
Operating and Storage Junction	Tj, T _{\$tg}	-65 to +200		°C

THENWAL CHARACTERISTICS			
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	ReJC	1.17	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	ΤL	275	°C

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

MJ13080, MJ13081

Characteristic		Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (1)						_
Collector-Emitter Sustaining Voltage (Table 1)		VCEO(sus)				Vdc
(I _C = 100 mA, I _B = 0)	MJ13080	,,	400		_	
	MJ13081		450		_	l
Collector Cutoff Current		ICEV				mAdo
(VCEV = Rated Value, VBE(off) = 1.5 Vdc)			_	- i	0.5	
(VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 100°C)			_		2.5	
Collector Cutoff Current		ICER	-	-	3.0	mAdd
(VCE = Rated VCEV. RBE = 60 Ω, TC = 100°C)	1		ļ		<u> </u>
Emitter Cutoff Current		1EBO	_	-	1.0	mAdo
(VEB = 6.0 Vdc, IC = 0)		<u> </u>				
SECOND BREAKDOWN						
Second Breakdown Collector Current with Bas	e Forward Biased	IS/b	See Figure 12		2	
Clamped Inductive SOA with Base Reverse Biased		RBSOA		See Figure 1.	3	
ON CHARACTERISTICS (1)						
DC Current Gain		hFE				I –
(IC = 5.0 Adc, VCE = 3.0 Vdc			8.0	<u> </u>		
Collector-Emitter Saturation Voltage		VCE(sat).		1 - 1		Vdc
(IC = 5.0 Adc, IB = 1.0 Adc)				1 - 1	1.0	
(IC = 8.0 Adc, Ig = 1.6 Adc)			-	-	3.0	
(IC = 5.0 Adc, IB = 1.0 Adc, TC = 100°C)					2.0	
Base-Emitter Saturation Voltage		VBE(set)]		Vdc
(IC = 5.0 Adc, IB = 1.0 Adc)		1	-	-	1.5	į
(IC = 5.0 Adc, IB = 1.0 Adc, TC = 100°C)		1		1	1.5	L
DYNAMIC CHARACTERISTICS						
Output Capacitance		Cop		1	300	p f
(VCB = 10 Vdc, IE = 0, ftest = 1.0 kHz)		.1			300	L
SWITCHING CHARACTERISTICS						
Resistive Load (Table 1)				, ,		
Delay Time (V _{CC} = 250 Vdc, I _C = 5.0 /	Adc.	td		0.025	0.05	μS
Hise time Int = 0.7 Add t = 30 us	• •	l _r	-	0.10	0.50	
Storage time Duty Cycle < 2% Voca-to	= 5.0 Vdc)	ts		0.50	1.50	
ran time	·	t _t		0.15	0.50	
Inductive Load, Clamped (Table 1)		-,		Ţ- <u></u> ,		
Storage Time		tsv		0.75	2,20	μ\$
Crossover Time (I _{C(pk)} = 5.0 A,	(T _J = 100°C)	t _C		0.22	0.40	
Fall Time Ig1 = 0.7 Adc,	·	ti		0.175	0.35	
Storage Time VBE(off) = 5.0 Vdc,		t _{sv}		0.40		
Crossover Time VCE(pk) = 250 V)	{T _J = 25°C}	tc		0.15		4
Fall Time		t fi	_	0.10	_	

⁽¹⁾ Pulse Test: PW - 300 μ s, Duty Cycle <2%. $\beta_{\rm F} = \frac{\rm IC}{\rm Ig}$