MJ15020 - NPN MJ15021 - PNP

Preferred Devices

Complementary Silicon Power Transistors

These transistors are designed for use as high frequency drivers in Audio Amplifiers.

Features

- High Gain Complementary Silicon Power Transistors
- Safe Operating Area 100% Tested 50 V, 3.0 A, 1.0 Sec
- Excellent Frequency Response $-f_T = 20 \text{ MHz min}$
- Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	MJ15020 MJ15021	Unit
Collector-Emitter Voltage	V _{CEO}	250	Vdc
Collector-Base Voltage	V _{CBO}	250	Vdc
Emitter-Base Voltage	V _{EBO}	7.0	Vdc
Collector Current – Continuous	lo	4.0	Adc
Base Current - Continuous	IB	2.0	Adc
Emitter Current - Continuous	ΙE	6.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	150 0.86	W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.17	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com

4.0 AMPERES
COMPLEMENTARY SILICONPOWER TRANSISTORS
200 – 250 VOLTS, 150 WATTS

TO-204AA (TO-3) CASE 1-07 STYLE 1

MARKING DIAGRAM

MJ1502x = Device Code

x = 0 or 1

G = Pb-Free Package A = Assembly Location

Y = Year WW = Work Week MEX = Country of Origin

ORDERING INFORMATION

Device	Package	Shipping
MJ15020	TO-204	100 Units / Tray
MJ15020G	TO-204 (Pb-Free)	100 Units / Tray
MJ15021	TO-204	100 Units / Tray
MJ15021G	TO-204 (Pb-Free)	100 Units / Tray

Preferred devices are recommended choices for future use and best overall value.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MJ15020 - NPN MJ15021 - PNP

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage (Note 1) (I _C = 100 mAdc, I _B = 0)	MJ15020, MJ15021	V _{CEO(sus)}	250	_	Vdc
Collector Cutoff Current (V _{CE} = 200 Vdc, I _B = 0)	MJ15020, MJ15021	I _{CEO}	-	500	μAdc
Emitter Cutoff Current (V _{EB} = 7.0 Vdc, I _C = 0)		I _{EBO}	_	500	μAdc
SECOND BREAKDOWN					
Second Breakdown Collector Current with Base Forward–Biasec $(V_{CE} = 50 \text{ Vdc}, t = 0.5 \text{ s (non-repetitive)})$		I _{S/b}	3.0	_	Adc
ON CHARACTERISTICS (Note 1)					
DC Current Gain $(I_C = 1.0 \text{ Adc}, V_{CE} = 4.0 \text{ V})$ $(I_C = 3.0 \text{ Adc}, V_{CE} = 4.0 \text{ V})$		h _{FE}	30 10	- -	-
Collector-Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 0.1 Adc)		V _{CE(sat)}	-	1.0	Vdc
Base–Emitter on Voltage (I _C = 1.0 Adc, V _{CE} = 4.0 Vdc)		V _{BE(on)}	_	2.0	Vdc
DYNAMIC CHARACTERISTICS					
Current-Gain – Bandwidth Product ($I_C = 0.5 \text{ Adc}$, $V_{CE} = 10 \text{ Vdc}$,	f _{test} = 1.0 MHz)	f _T	20	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, F _{test} = 1.0 MHz)		C _{ob}	_	500	pF

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%

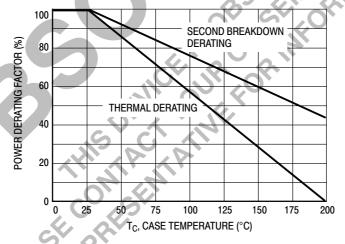


Figure 1. Power Derating

TYPICAL DYNAMIC CHARACTERISTICS

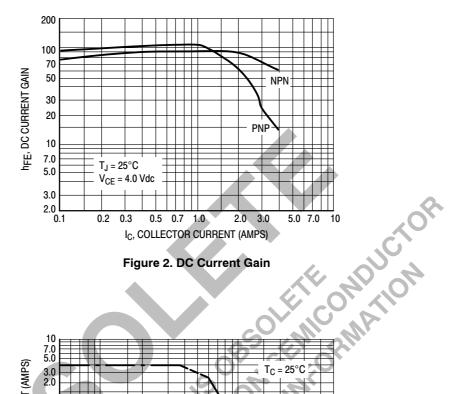
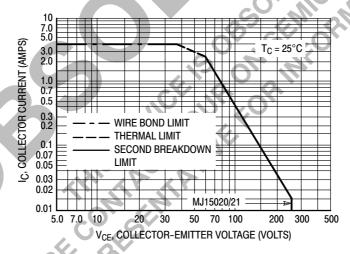
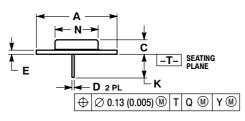
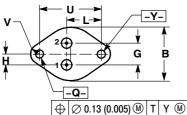


Figure 2. DC Current Gain


Figure 3. Maximum Rated Forward Biased Safe Operating Area

MJ15020 - NPN MJ15021 - PNP

PACKAGE DIMENSIONS

TO-204 (TO-3) **CASE 1-07** ISSUE Z

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		INCHES MILLIMET		
DIM	MIN	MAX	MIN	MAX	
A	1.550 REF		39.37	7 REF	
В	-4-	1.050		26.67	
C	0.250	0.335	6.35	8.51	
D	0.038	0.043	0.97	1.09	
E	0.055	0.070	1.40	1.77	
G	0.430	BSC	10.92 BSC		
Н	0.215 BSC		5.46 BSC		
K	0.440	0.480	11.18	12.19	
L	0.665 BSC		16.89 BSC		
N		0.830		21.08	
Q	0.151	0.165	3.84	4.19	
U	1.187 BSC		30.15 BSC		
У	0.131	0.188	3.33	4.77	

| Land | Color ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) solicit esserves the right to make changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative