20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

NPN Silicon Power Darlington Transistors

The MJE5740, 41, 42 Darlington transistors are designed for high-voltage power switching in inductive circuits. They are particularly suited for operation in applications such as:

- Small Engine Ignition ٠
- Switching Regulators
- Inverters
- Solenoid and Relay Drivers
- Motor Controls

MAXIMUM RATINGS

Rating	Symbol	MJE5740	MJE5741	MJE5742	Unit
Collector-Emitter Voltage	VCEO(sus)	300	350	400	Vdc
Collector-Emitter Voltage	VCEV	600	700	800	Vdc
Emitter Base Voltage	VEB		8	· · · · · · · · · · · · · · · · · · ·	Vdc
Collector Current — Continuous — Peak (1)	IС IСМ	8 16			Adc
Base Current — Continuous — Peak (1)	^I В I _{ВМ}	2.5 5			Adc
Total Power Dissipation @ T _A = 25°C Derate above 25°C	PD		2 16	- in incom	Watts mW/°C
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD		80 640		Watts mW/°C
Operating and Storage Junction Temperature Range	Тј, T _{stg}	-	-65 to +150		°C

Symbol

 $R_{\theta JC}$

 $R_{\theta JA}$

ΤL

*Motorola Preferred Device

POWER DARLINGTON TRANSISTORS **8 AMPERES** 300, 350, 400 VOLTS 80 WATTS

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (2)					L	,
$(I_{C} = 50 \text{ mA}, I_{B} = 0)$	AJE5740 AJE5741 AJE5742	VCEO(sus)	300 350 400			Vdc
Collector Cutoff Current (V _{CEV} = Rated Value, V _{BE(off)} = 1.5 Vdc) (V _{CEV} = Rated Value, V _{BE(off)} = 1.5 Vdc, T _C = 100°C)		ICEV		_	1 5	mAdc
Emitter Cutoff Current (V _{EB} = 8 Vdc, I _C = 0)		IEBO			75	mAdc
SECOND BREAKDOWN				•		
Second Breakdown Collector Current with Base Forward Biased		IS/b	See Figure 6			
Clamped Inductive SOA with Base Reverse Biased		RBSOA	SOA See Figure 7			
2) Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.						(continue

Max

1.56

62.5

275

Unit

°C/W

°C/W

°C

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle = 10%.

Characteristic

THERMAL CHARACTERISTICS

Thermal Resistance, Junction to Case

Thermal Resistance, Junction to Ambient

Maximum Lead Temperature for Soldering

Purposes: 1/8" from Case for 5 Seconds

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

MJE5740 MJE5741 MJE5742

Min Тур Max Unit Characteristic Symbol **ON CHARACTERISTICS (1)** 50 100 DC Current Gain (IC = 0.5 Adc, VCE = 5 Vdc) hFE $(I_C = 4 \text{ Adc}, V_{CE} = 5 \text{ Vdc})$ 200 400 _____ 2 Vdc Collector–Emitter Saturation Voltage ($I_C = 4 \text{ Adc}, I_B = 0.2 \text{ Adc}$) V_{CE(sat)} $(I_{C} = 8 \text{ Adc}, I_{B} = 0.4 \text{ Adc})$ 3 ----- $(I_{C} = 4 \text{ Adc}, I_{B} = 0.2 \text{ Adc}, T_{C} = 100^{\circ}\text{C})$ 2.2 _ _ $\begin{array}{l} \text{Base-Emitter Saturation Voltage (I_C = 4 \mbox{ Adc, I_B = 0.2 \mbox{ Adc})} \\ (I_C = 8 \mbox{ Adc, I_B = 0.4 \mbox{ Adc})} \\ (I_C = 4 \mbox{ Adc, I_B = 0.2 \mbox{ Adc, T_C = 100^{\circ}C})} \end{array}$ Vdc 2.5 VBE(sat) 3.5 _ _ 2.4 2.5 Vdc Diode Forward Voltage (2) (IF = 5 Adc) Vf

ELECTRICAL CHARACTERISTICS — continued (T_C = 25°C unless otherwise noted)

SWITCHING CHARACTERISTICS

Typical Resistive Load (Table 1)					
Delay Time	(V _{CC} = 250 Vdc, I _{C(pk)} = 6 A I _{B1} = I _{B2} = 0.25 A, t _p = 25 μs, Duty Cycle ≤ 1%)	td	-	0.04	—	μs
Rise Time		tr	—	0.5	_	μs
Storage Time		ts	—	8	—	μs
Fall Time		tf	—	2	-	μs
Inductive Load, Clampe	d (Table 1)					
Voltage Storage Time	(I _{C(pk)} = 6 A, V _{CE(pk)} = 250 Vdc I _{B1} = 0.06 A, V _{BE(off)} = 5 Vdc)	t _{sv}	_	4	_	μs
Crossover Time		t _c	-	2	_	μs

(1) Pulse Test: Pulse Width 300 μs, Duty Cycle = 2%.

(2) The internal Collector-to-Emitter diode can eliminate the need for an external diode to clamp inductive loads. Tests have shown that the Forward Recovery Voltage (Vf) of this diode is comparable to that of typical fast recovery rectifiers.

TYPICAL CHARACTERISTICS

hFE, DC CURRENT GAIN