New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

NPN - MPS8099; PNP -MPS8599

Amplifier Transistors

Voltage and Current are Negative for PNP Transistors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	80	Vdc
Collector – Base Voltage	V _{CBO}	80	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ιc	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/ºC
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient (Note 1)	R _{0JA}	200	°C/W
Thermal Resistance, Junction-to-Case	Reac	83.3	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. $\mathsf{R}_{\theta\mathsf{J}\mathsf{A}}$ is measured with the device soldered into a typical printed circuit board.

NJ

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

NPN - MPS8099; PNP - MPS8599

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector – Ernitter Breakdown Voltage (Note 2) $(I_C = 10 \text{ mAdc}, I_B = 0)$	V _(BR) ceó	80	_	Vdc
Collector – Base Breakdown Voltage $(I_{C} = 100 \ \mu \text{Adc}, I_{E} = 0)$	V _{(BR)CBO}	80	_	Vdc
Emitter – Base Breakdown Voltage ($I_E = 10 \ \mu$ Adc, $I_C = 0$)	V _{(BR)EBO}	6.0	-	Vdc
Collector Cutoff Current ($V_{CE} = 60 \text{ Vdc}, I_B = 0$)	ICES	_	0.1	μAdc
Collector Cutoff Current (V _{CB} = 80 Vdc, I _E = 0)	I _{CBO}	_	0.1	μAdc
Emitter Cutoff Current (V _{EB} = 6.0 Vdc, I _C = 0)	I _{EBO}	_	0.1	μAdc
ON CHARACTERISTICS (Note 2)				
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc) (I _C = 100 mAdc, V _{CE} = 5.0 Vdc)	h _{FE}	100 100 75	300 - -	-
Collector – Emitter Saturation Voltage ($I_C = 100 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$)	V _{CE(sat)}		0.4 0.3	Vdc
Base-Emitter On Voltage ($I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$)	V _{BE(on)}	0.6	0.8	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain – Bandwidth Product (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)	f _T	150	-	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	8.0	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _{ibo}	_	30	pF

2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle = 2.0%.