New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

MRF136

MRF136Y

15 W, 30 W 2-400 MHz N-CHANNEL TMOS BROADBAND

RF POWER FETs

The RF TMOS Line **RF Power Field-Effect Transistors** N-Channel Enhancement-Mode TMOS

... designed for wideband large-signal amplifier and oscillator applications in the 2 to 400 MHz range, in either single ended or push-pull configuration.

 Guaranteed 28 Voit, 150 MHz Performance MRF136 MRF136Y

MAXIMUM RATINGS

Modulation Techniques

Rating	Symbol	Value		11-14
		MRF136	MRF136Y	Unit
Drain-Source Voltage	VDSS	65	65	Vdc
Drain-Gate Voltage ($R_{GS} = 1 M\Omega$)	VDGR	65	65	Vdc
Gate-Source Voltage	VGS	± 40		Vdc
Drain-Current — Continuous		2.5	5	Adc
Total Device Dissipation (a T _C = 25°C Derate above 25°C	PD	55 0.314	100 0.571	Watts W/°C
Storage Temperature Range	Tstg	-65 to +150		°C
Operating Junction Temperature	T	200		°C

	Symbol	Max		Unit	
Characteristic		MRF136	MRF136Y	Unit	
Thermal Resistance, Junction to Case	RAJC	3.2	1.75	°C/W	
Man and the second s					

^{Handling} and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS ^{Jevices} should be observed.

Quality Semi-Conductors

MRF136, MRF136Y

Characteristic	Symbol	Min	Тур	Max	Unit
DFF CHARACTERISTICS (NOTE 1)					
Drain-Source Breakdown Voltage (VGS = 0, ID = 5 mA)	V(BR)DSS	65	-	-	Velc
Zero-Gate Voltage Drain Current (VDS = 28 V, VGS = 0)	IDSS	-	-	2	mAdc
Gate-Source Leakage Current (VGS = 40 V, VDS = 0)	IGSS	_	-	1	μAdc
ON CHARACTERISTICS (NOTE 1)					-d
Gate Threshold Voltage (VDS = 10 V, ID = 25 mA)	V _{GS(th)}	1	3	6	Vdc
Forward Transconductance (VDS = 10 V, ID = 250 mA)	9fs	250	400	_	mmhor
DYNAMIC CHARACTERISTICS (NOTE 1)					
Input Capacitance (VDS = 28 V, VGS = 0, f = 1 MHz)	Ciss	-	24	-	pF
Output Capacitance $(V_{DS} = 28 V, V_{GS} = 0, f = 1 MHz)$	Coss		27	_	pF
Reverse Transfer Capacitance ($V_{DS} = 28 V, V_{GS} = 0, f = 1 MHz$)	C _{rss}		5.5	_	pF
UNCTIONAL CHARACTERISTICS (NOTE 2)					
Noise Figure MRF136 (VDS = 28 Vdc, ID = 500 mA, f = 150 MHz)	NF	-	1	_	d8
$ Common Source Power Gain (Figure 1) \\ MRF136 \\ (V_{DD} = 28 \mbox{ Vdc}, P_{out} = 15 \mbox{ W}, f = 150 \mbox{ MHz}, I_{DQ} = 25 \mbox{ mA}) $	G _{ps}	13	16	-	dB
Common Source Power Gain (Figure 2) MRF136Y (VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 100 mA) mA)	G _{ps}	12	14	-	dB
Drain Efficiency (Figure 1) MRF136 (V _{DD} = 28 Vdc, P _{out} = 15 W, f = 150 MHz, I _{DQ} = 25 mA)	η	50	60	_	*
Drain Efficiency (Figure 2) MRF136Y (VDD = 28 Vdc, P _{out} = 30 W, f = 150 MHz, I _{DQ} = 100 mA)	η	50	54	-	*
Electrical Ruggedness (Figure 1) MRF136 (Vpp = 28 Vdc, P _{out} = 15 W, f = 150 MHz, Ip <u>0</u> = 25 mA, VSWR 30:1 at all Phase Angles)	ψ	No Degradation in Output Power			
Electrical Ruggedness (Figure 2) MRF136Y (VDD = 28 Vdc, P _{out} = 30 W, f = 150 MHz, I _{DQ} = 100 mA, VSWR 30:1 at all Phase Angles)	ψ	No Degradation in Output Power			

Notes: 1. For MRF136Y, each side measured separately. 2. For MRF136Y measured in push-pull configuration.