New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

The RF MOSFET Line **RF Power Field-Effect Transistor** N-Channel Enhancement-Mode MOSFET

Designed primarily for wideband large-signal output and driver stages from 30-200 MHz.

- Guaranteed Performance at 150 MHz, 28 Vdc Output Power = 45 Watts Power Gain = 17 dB (Min) Efficiency = 60% (Min)
- · Excellent Thermal Stability, Ideally Suited for Class A Operation
- Facilitates Manual Gain Control, ALC and Modulation Techniques
- 100% Tested for Load Mismatch At All Phase Angles with 30:1 VSWR
- Low Crss 8 pF @ Vps = 28 V
- Gold Top Metal

Typical Data For Power Amplifier Applications in Industrial, Commercial and Amateur Radio Equipment

 Typical Performance at 30 MHz, 28 Vdc Output Power = 30 Watts (PEP) Power Gain = 20 dB (Typ) Efficiency = 50% (Typ) IMD(d3) (30 Watts PEP) –32 dB (Typ) TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

MRF171A

45 W, 150 MHz MOSFET BROADBAND RF POWER FET

MAXIMUM RATINGS

Rating	Symbol	Value		Unit	
Drain-Gate Voltage		VDSS	65		Vdc
Drain–Gate Voltage (R _{GS} = 1.0 M Ω)		VDGR	65		Vdc
Gate-Source Voltage		VGS	±20		Adc
Drain Current — Continuous		١D	4.5		Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C		PD	115 0.66		Watts W/ºC
Storage Temperature Range		T _{stg}	-65 to +150		°C
Operating Junction Temperature	Тj	200		°C	
THERMAL CHARACTERISTICS					
Characteristic		Symbol	Max		Unit
Thermal Resistance, Junction to Case		R _θ JC	1.52		°C/W
ELECTRICAL CHARACTERISTICS (T _C = 25°C un	less otherwise noted)				
Characteristic	Symbol	Min	Тур	Max	Unit
DFF CHARACTERISTICS	-				
Drain–Source Breakdown Voltage ($I_D = 50 \text{ mA}, V_{GS} = 0$)	V(BR)DSS	65	80		Vdc
Zero Gate Voltage Drain Current (V _{GS} = 0, V _{DS} = 28 V)	IDSS	-	—	1.0	mAdo
Gate-Source Leakage Current (VGS = 20 V, VDS = 0)	IGSS	_		1.0	μAdc

Ð

NOTE – **CAUTION** – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

Quality Semi-Conductors

ELECTRICAL CHARACTERISTICS – continued (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
ON CHARACTERISTICS						
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 50 mA)	VGS(th)	1.5	2.5	4.5	Vdc	
Drain-Source On-Voltage (V _{GS} = 10 V, I _D = 3 A)	VDS(on)		1.0	—	V	
Forward Transconductance (V _{DS} = 10 V, I _D = 2 A)	9fs	1.4	1.8	_	mhos	
DYNAMIC CHARACTERISTICS	• • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·			
Input Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{iss}		60		pF	
Output Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{OSS}		70	—	pF	
Reverse Transfer Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{rss}		8		pF	
FUNCTIONAL CHARACTERISTICS	•					
Common Source Power Gain (V _{DD} = 28 V, P _{out} = 45 W, f = 150 MHz, I _{DQ} = 25 mA)	G _{ps}	17	19.5	_	dB	
Drain Efficiency (V _{DD} = 28 V, Pout = 45 W, f = 150 MHz, I _{DQ} = 25 mA)	η	60	70	_	%	
Electrical Ruggedness (V _{DD} = 28 V, P _{out} = 45 W, f = 150 MHz, I _{DQ} = 25 mA, VSWR 30:1 at All Phase Angles)		No Degradation in Output Power				
TYPICAL FUNCTIONAL TESTS (SSB)						
Common Source Power Gain (V _{DD} = 28 V, P _{out} = 30 W (PEP), I _{DQ} = 100 mA, f = 30; 30.001 MHz)	G _{ps}		20	—	dB	
Drain Efficiency (V _{DD} = 28 V, P _{out} = 30 W (PEP), I _{DQ} = 100 mA, f = 30; 30.001 MHz)	η	—	50	_	%	
Intermodulation Distortion (V _{DD} = 28 V, P _{out} = 30 W (PEP), I _{DQ} = 100 mA, f = 30; 30.001 MHz)	IMD(d3)	_	-32		dB	