New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

Advance Information The RF Sub-Micron MOSFET Line RF Power Field Effect 1 N-Channel Enhancement-Mode L	Fransisto	1		RF284 F284	-	
Designed for PCN and PCS base station applications at frequencies from 1000 to 2600 MHz. Suitable for FM, TDMA, CDMA, and multicarrier amplifier applications. To be used in class A and class AB for PCN–PCS/cellular radio and wireless local loop.			30 W, 2000 MHz, 26 V LATERAL N-CHANNEL BROADBAND RF POWER MOSFETS			
 Specified Two–Tone Performance @ 2000 MHz, 26 V Output Power = 30 Watts (PEP) Power Gain = 10 dB Efficiency = 30% Intermodulation Distortion = -30 dBc 	olts			\sim		
 Typical Single—Tone Performance at 2000 MHz, 26 Volts Output Power = 30 Watts (CW) Power Gain = 9 dB Efficiency = 45% 			CASE 360B-01, (MRF284)			
Characterized with Series Equivalent Large–Signal Im Parameters S. Beremeter Characterization at High Bigs Levels	pedance		4	\sim		
S-Parameter Characterization at High Bias Levels			E			
Excellent Thermal Stability	- 20			Se la constante de la constant		
 Capable of Handling 10:1 VSWR, @ 26 Vdc, 2000 MHz, 30 Watts (CW) Output Power Gold Metallization for Improved Reliability 			CASE 360C-03, (MRF284S)			
Rating		Symbol	Value		Uni	
Drain-Source Voltage		V _{DSS}	65		Vdd	
Gate-Source Voltage		V _{GS}	±20		Vdc	
Total Device Dissipation @ T _C = 25°C Derate above 25°C		PD	87.5 0.5		Watt W/º(
Storage Temperature Range		T _{stg}	-65 to +150		°C	
Operating Junction Temperature			200 °C			
		. 1				
Characteristic		Symbol	Max		Unit	
Thermal Resistance, Junction to Case		Rejc	2.0		°C/M	
LECTRICAL CHARACTERISTICS (T _C = 25°C unless of	nerwise noted)					
Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS	I	L				
Drain–Source Breakdown Voltage (V _{GS} = 0, I _D = 10 μ Adc)	V _{(BR)DSS}	65	_	_	Vdc	
Zero Gate Voltage Drain Current (V _{DS} = 20 Vdc, V _{GS} = 0)	IDSS	—	<u> </u>	1.0	μAdd	
Gate-Source Leakage Current	IGSS		_	10	uAdo	

NOTE - <u>CAUTION</u> - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

ELECTRICAL CHARACTERISTICS	$(T_{\rm C} = 25^{\circ}\text{C} \text{ unless otherwise noted})$
----------------------------	---

Characteristic	Symbol	Min	Тур	Max	Unit	
ON CHARACTERISTICS					_	
Gate Threshold Voltage ($V_{DS} = 10$ Vdc, $I_D = 150 \mu Adc$)	V _{GS(th)}	2.0	3.0	4.0	Vdc	
Gate Quiescent Voltage $(V_{DS} = 26 \text{ Vdc}, I_D = 200 \text{ mAdc})$	V _{GS(q)}	3.0	4.0	5.0	Vdc	
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 1.0 Adc)	V _{DS(on)}	-	0.3	0.6	Vdc	
Forward Transconductance (V _{DS} = 10 Vdc, I _D = 1.0 Adc)	9fs	1.0	1.5	-	s	
YNAMIC CHARACTERISTICS					<u> </u>	
Input Capacitance $(V_{DS} = 26 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$	C _{iss}	-	37	-	ρF	
Output Capacitance ($V_{DS} \neq 26$ Vdc, $V_{GS} = 0$, f = 1.0 MHz)	C _{oss}	-	23		pF	
Reverse Transfer Capacitance (V _{DS} = 26 Vdc, V _{GS} = 0, f = 1.0 MHz)	Crss		1.2	-	pF	
UNCTIONAL TESTS (in Motorola Test Fixture)	···		4	·	I	
Common–Source Power Gain (V _{DD} = 26 Vdc, P _{out} = 30 W, I _{DQ} = 200 mA, f1 = 2000.0 MHz, f2 = 2000.1 MHz)	G _{ps}	9	10.5	-	dB	
Drain Efficiency (V _{DD} = 26 Vdc, P _{out} = 30 W, I _{DQ} = 200 mA, f1 = 2000.0 MHz, f2 = 2000.1 MHz)	η	30	33	-	%	
Intermodulation Distortion (V _{DD} = 26 Vdc, P _{out} = 30 W, I _{DQ} = 200 mA, f1 = 2000.0 MHz, f2 = 2000.1 MHz)	IMD		-33	-29	dBc	
Input Return Loss (V _{DD} = 26 Vdc, P _{out} = 30 W, I _{DQ} = 200 mA, f1 = 2000.0 MHz, f2 = 2000.1 MHz)	IRL	9	24	· _	dB	
Common–Source Amplifier Power Gain (V _{DD} = 26 Vdc, P _{out} = 30 W PEP, I _{DQ} = 200 mA, f1 = 1930.0 MHz, f2 = 1930.1 MHz)	G _{ps}	9	10.7	-	dB	
Drain Efficiency (V _{DD} = 26 Vdc, P _{out} = 30 W PEP, I _{DQ} ≈ 200 mA, f1 = 1930.0 MHz, f2 = 1930.1 MHz)	η		33		%	
ntermodulation Distortion (V _{DD} = 26 Vdc, P _{out} = 30 W PEP, I _{DQ} = 200 mA, f1 = 1930.0 MHz, f2 = 1930.1 MHz)	I _{MD}	-	-33	-	dBc	
nput Return Loss (V _{DD} = 26 Vdc, P _{out} = 30 W PEP, I _{DQ} = 200 mA, f1 = 1930.0 MHz, f2 = 1930.1 MHz)	I _{RL}	9	15	-	dB	
ommon-Source Amplifier Power Gain (V _{DD} = 26 Vdc, P _{out} = 30 W CW, I _{DQ} = 200 mA, f1 = 2000.0 MHz)	G _{ps}	8.5	10.7	-	dB	
rain Efficiency (V _{DD} = 26 Vdc, P _{out} = 30 W CW, I _{DQ} = 200 mA, f1 = 2000.0 MHz)	η	35	-	. –	%	
utput Mismatch Stress (V _{DD} = 26 Vdc, P _{out} = 30 W CW, I _{DQ} = 200 mA, f1 = 2000.0 MHz, VSWR = 10:1, at All Phase Angles)	Ψ	No Degradation In Output Power				

Quality Semi-Conductors