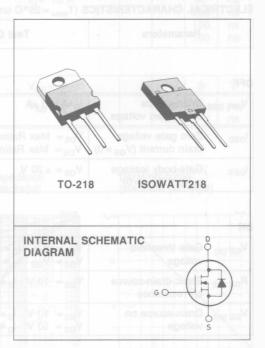


MTH40N06FI

N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTORS


TYPE	V _{DSS}	R _{DS(on)}	ID
MTH40N06	60 V	0.028 Ω	40 A
MTH40N06FI	60 V	0.028 Ω	26 A

- VERY LOW ON-LOSSES
- RATED FOR UNCLAMPED INDUCTIVE SWITCHING (ENERGY TEST)
- LOW DRIVE ENERGY FOR EASY DRIVE
- HIGH TRANSCONDUCTANCE/C_{rss} RATIO

AUTOMOTIVE POWER APPLICATIONS

N - channel enhancement mode POWER MOS field effect transistors. Easy drive and very fast switching times make these POWER MOS transistors ideal for high speed switching circuit in applications such as power actuator driving, motor drive including brushless motors, hydraulic actuators and many other uses in automotive applications.

They also find use in DC/DC converters and uninterruptible power supplies.

ABSOL	UTE MAXIMUM RATINGS TO-218	МТН	40N06	
A	ISOWATT218	IC = agV ■ MTH	40N06FI	ew
V _{DS}	Drain-source voltage (V _{GS} = 0)		60	V
V _{DGR}	Drain-gate voltage ($R_{GS} = 1 M\Omega$)		60	V
V_{GS}	Gate-source voltage		±20	V
I _{DM}	Drain current (pulsed)		140	A
		TO-218	ISOWATT	218
ID .	Drain current (cont.) T _c = 20°C	40	26	A
P _{tot}	Total dissipation at T _c <25°C	150	65	W
	Derating factor	1.2	0.52	W/°C
T _{sta}	Storage temperature	-65	to 150	°C
Tj	Max. operating junction temperature		150	°C

- See note on ISOWATT218 in this datasheet
- Introduced in 1988 week 44

THER		

TO-218 | ISOWATT218

THURSDAY THE CONTRACTOR OF STREET	71111 015-22	HEREN	SAULUL	at TRANS
R _{thj - case} Thermal resistance junction-case	max	0.83	1.92	°C/W
T _I Maximum lead temperature for soldering purpose	max	27	5	°C

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise specified)

Parameters	Test Conditions	Min.	Тур.	Max.	Unit
	The state of the s	acord pane			

OFF

V _{(BR) DSS}	Drain-source breakdown voltage	$I_D = 100 \ \mu A$ $V_{GS} = 0$	60	ED FOR UN	٧
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	$V_{DS} = Max Rating \times 0.85$ $V_{DS} = Max Rating \times 0.85 T_c = 100^{\circ}C$	TOUGH	250 1000	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20 \text{ V}$	discent t	±100	nA

ON *

V _{GS (th)}	Gate threshold voltage	$V_{DS} = V_{GS}$ $I_{D} = 1 \text{ mA}$ $V_{DS} = V_{GS}$ $I_{D} = 1 \text{ mA}$ $T_{c} = 100^{\circ}\text{C}$	_	4.5	V
R _{DS (on)}	Static drain-source on resistance	V _{GS} = 10 V I _D = 20 A	A Deligion	0.028	Ω
V _{DS (on)}	Drain-source on voltage	V _{GS} = 10 V I _D = 40 A V _{GS} = 10 V I _D = 20 A T _c = 100°C		1.4 1.12	V

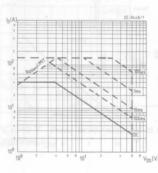
ENERGY TEST

I _{UIS}	Unclamped inductive switching current	0.0	$L = 100 \mu H$	40			Α
	(single pulse)	starting T _j = 25°C		ellov ec	nuas-ru	Dra	80

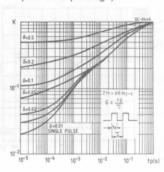
DYNAMIC

g _{fs} *	Forward transconductance	V _{DS} = 15 V I _D = 20 A	10 Inipo), Internuo o	Drain	mho
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 25 V f = 1 MHz V _{GS} = 0	dissipation at ling factor age temperatur operating jun	5000 2500 1000	pF pF pF
Qg	Total gate charge	$V_{DS} = 50 \text{ V}$ $I_D = 40 \text{ A}$		120	nC

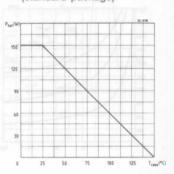
ELECTRICAL CHARACTERISTICS (Continued)

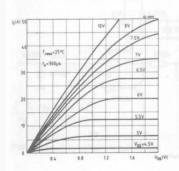

	Parameters	Test	Conditions	Min.	Тур.	Max.	Unit		
SWITCHING									
td (on) tr td (off)	Turn-on time Rise time Turn-off delay time	$V_{DD} = 25 \text{ V}$ $R_{gen} = 50 \Omega$	I _D = 20 A			50 300 150	ns ns ns		
t _e	Fall time				POLICE	100	ns		

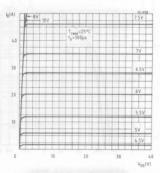
SOURCE DRAIN DIODE

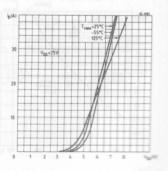

V _{SD}	Forward on voltage	I _{SD} = 40 A	$V_{GS} = 0$	54 () ()	3	V
t _{rr}	Reverse recovery time Forward turn-on time	I _{SD} = 40 A	V _{GS} = 0	200 150		ns ns

Pulsed: Pulse duration ≤ 300 μs, duty cycle ≤ 2%

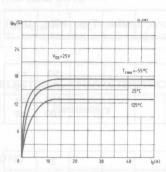

Safe operating areas (standard package)


Thermal impedance (standard package)

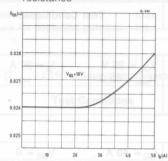

Derating curve (standard package)


Output characteristics

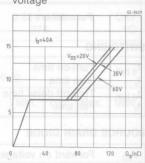
Output characteristics

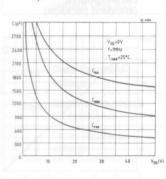


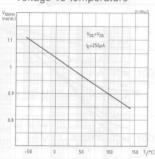
Transfer characteristics

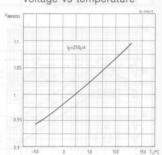


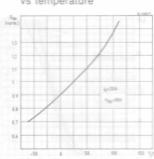
See note on ISOWATT218 in this datasheet

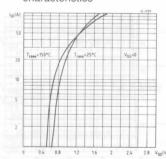

Transconductance


resistance

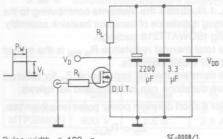

Static drain-source on Gate charge vs gate-source voltage

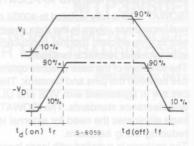

Capacitance variation


Normalized gate threshold voltage vs temperature

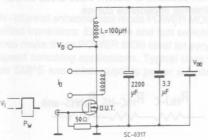

Normalized breakdown voltage vs temperature

Normalized on resistance vs temperature


Source-drain diode forward characteristics

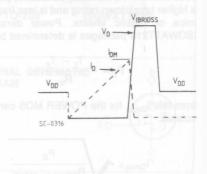


Switching times test circuit for resistive load

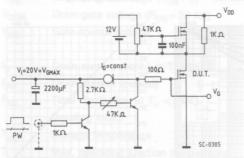


Pulse width \leqslant 100 μ s Duty cycle \leqslant 2%

Switching time waveforms for resistive load

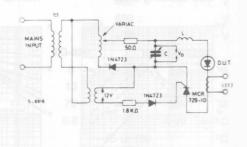


Unclamped inductive load test circuit



 V_i = 12 V - Pulse width: adjusted to obtain specified I_{DM}

Unclamped inductive waveforms



Gate charge test circuit

PW adjusted to obtain required V_G

Body-drain diode t_{rr} measurement Jedec test circuit

ISOWATT218 PACKAGE CHARACTERISTICS AND APPLICATION.

ISOWATT218 is fully isolated to 4000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together with excellent electrical isolation.

The structure of the case ensures optimum distances between the pins and heatsink. These distances are in agreement with VDE and UL creepage and clearance standards. The ISOWATT218 package eliminates the need for external isolation so reducing fixing hardware.

The package is supplied with leads longer than the standard TO-218 to allow easy mounting on pcbs. Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink capacitance

ISOWATT218 thermal performance is better than that of the standard part, mounted with a 0.1mm mica washer. The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for ISOWATT218 packages is determined by:

$$P_{D} = \frac{T_{j} - T_{c}}{R_{th}}$$

from this I_{Dmax} for the POWER MOS can be calculated:

$$I_{Dmax} \le \sqrt{\frac{P_D}{R_{DS(on) (at 150°C)}}}$$

THERMAL IMPEDANCE OF ISOWATT218 PACKAGE

Fig. 1 illustrates the elements contributing to the thermal resistance of transistor heatsink assembly, using ISOWATT218 package.

The total thermal resistance $R_{th\ (tot)}$ is the sum of each of these elements.

The transient thermal impedance, Z_{th} for different pulse durations can be estimated as follows:

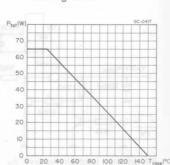
1 - for a short duration power pulse less than 1ms;

$$Z_{th} < R_{thJ-C}$$

2 - for an intermediate power pulse of 5ms to 50ms:

$$Z_{th} = R_{thJ-C}$$

3 - for long power pulses of the order of 500ms or greater:


$$Z_{th} = R_{thJ-C} + R_{thC-HS} + R_{thHS-amb}$$

It is often possibile to discern these areas on transient thermal impedance curves.

Fig. 1

ISOWATT DATA

Safe operating areas Thermal impedance (C-0445) (6-0445) (6-0445) (6-045) (6-045) (6-045) (6-045) (6-045) (6-045) (7-0445) (8-02) (8-02) (9-0445) (9-04

Derating curve