

C to Ku BAND SUPER LOW NOISE AMPLIFIER N-CHANNEL HJ-FET

DESCRIPTION

NEC

The NE429M01 is a Hetero Junction FET that utilizes the hetero junction to create high mobility electrons. Its excellent low noise and high associated gain make it suitable for DBS, TVRO and another commercial systems.

FEATURES

- Super low noise figure & High associated gain NF = 0.9 dB TYP., Ga = 10 dB TYP. @ f = 12 GHz
- 6-pin super minimold package
- Gate width: Wg = 200µm

ORDERING INFORMATION

Part Number	Package	Marking	Supplying Form
NE429M01-T1	6-pin super minimold	V72	Embossed tape 8 mm wide. 1, 2, 3 pins face to perforation side of the tape Qty 3 kpcs/reel

ABSOLUTE MAXIMUM RATINGS (TA = +25 °C)

Parameter	Symbol	Ratings	Unit
Drain to Source Voltage	Vds	4.0	V
Gate to Source Voltage	Vgs	-3.0	V
Drain Current	lo	loss	mA
Gate Current	lg	100	μA
Total Power Dissipation	Ptot	125	mW
Channel Temperature	Tch	125	°C
Storage Temperature	Tstg	-65 to +125	°C

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

PIN CONNECTIONS

Pin No.	Pin name	
1	Gate	
2	Source	
3	Source	
4	Drain	
5	Source	
6	Source	

RECOMMENDED OPERATING CONDITION (TA = +25 °C)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Drain to Source Voltage	VDS	1	2	3	V
Drain Current	lo	5	10	20	mA
Input Power	Pin	-	-	0	dBm

ELECTRICAL CHARACTERISTICS (T_A = +25 °C)

Parameter	Symbol	Test Cor	MIN.	TYP.	MAX.	Unit	
Gate to Source Leak Current	lgso	$V_{GS} = -3 V$	-	0.5	10	μA	
Saturated Drain Current	loss	Vds = 2 V, Vgs =	20	60	90	mA	
Gate to Source Cutoff Voltage	VGS(off)	VDS = 2 V, ID = 10	-0.2	-0.7	-2.0	V	
Transconductance	g m	Vps = 2 V, lp = 10 mA		45	60	-	mS
Noise Figure	NF	f = 12 GHz V _{DS} = 2 V		-	0.9	1.2	dB
		f = 4 GHz	Io = 10 mA	_	0.4	-	
Associated Gain	Ga	f = 12 GHz		9.0	10	_	dB
		f = 4 GHz		_	15.0	_	

TYPICAL CHARACTERISTICS ($T_A = +25 \text{ °C}$)

MAXIMUM AVAILABLE GAIN, FORWARD INSERTION GAIN vs. FREQUENCY

Gain Calculations

MSG. =
$$\frac{|S_{21}|}{|S_{12}|}$$
 K = $\frac{1 + |\Delta|^2 - |S_{11}|^2 - |S_{22}|^2}{2 |S_{12}| |S_{21}|}$

MAG. = $\frac{|S_{21}|}{|S_{12}|}$ (K ± $\sqrt{K^2 - 1}$)

 $\overline{\mathbf{K}^2 - \mathbf{1}}) \qquad \Delta = \mathbf{S}_{11} \cdot \mathbf{S}_{22} - \mathbf{S}_{21} \cdot \mathbf{S}_{12}$

★ S-PARAMETERS

MAG. AND ANG.

 $V_{DS} = 2 V$, $I_{D} = 10 mA$

FREQUENCY	5	S11	S	S 21	S	5 12	S	S22
MHz	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.
		(deg.)		(deg.)		(deg.)		(deg.)
2000	0.939	-33.5	4.728	146.1	0.040	69.6	0.597	-22.6
2500	0.916	-42.1	4.643	138.0	0.049	63.3	0.571	-28.5
3000	0.889	-50.7	4.546	130.0	0.055	59.2	0.557	-34.1
3500	0.856	-58.1	4.405	122.7	0.062	54.4	0.535	-39.4
4000	0.822	-65.2	4.279	115.1	0.066	50.2	0.510	-44.7
4500	0.790	-71.6	4.165	108.4	0.071	46.5	0.488	-48.9
5000	0.768	-77.9	4.099	102.2	0.075	41.6	0.478	-53.8
5500	0.736	-84.2	4.024	95.9	0.080	37.9	0.459	-56.9
6000	0.709	-91.2	4.013	89.3	0.082	36.9	0.441	-61.0
6500	0.679	-99.0	4.018	82.5	0.086	32.2	0.418	-65.5
7000	0.651	-109.1	4.007	74.7	0.091	27.4	0.386	-71.9
7500	0.626	-120.5	3.978	66.7	0.097	23.4	0.341	-78.7
8000	0.598	-132.6	3.940	58.6	0.099	17.0	0.296	-86.2
8500	0.576	-144.9	3.862	50.2	0.097	12.1	0.252	-94.9
9000	0.551	-157.4	3.775	42.3	0.100	6.6	0.212	-106.2
9500	0.527	-169.6	3.686	34.2	0.102	1.2	0.185	-121.8
10000	0.504	177.7	3.585	25.6	0.101	-6.1	0.166	-139.1
10500	0.494	163.6	3.475	17.8	0.101	-12.3	0.155	-157.3
11000	0.495	149.1	3.367	9.4	0.098	-16.5	0.149	178.4
11500	0.529	134.8	3.282	0.5	0.096	-22.3	0.148	158.4
12000	0.563	120.1	3.167	-8.6	0.095	-30.6	0.165	134.2
12500	0.608	106.2	3.011	-18.5	0.092	-38.8	0.194	109.4
13000	0.637	95.3	2.773	-27.7	0.085	-46.3	0.237	91.2
13500	0.645	86.6	2.562	-35.9	0.079	-50.2	0.279	80.9
14000	0.668	78.8	2.398	-43.8	0.072	-54.7	0.321	76.2
14500	0.689	70.0	2.231	-52.3	0.073	-60.3	0.372	74.3
15000	0.702	63.1	2.028	-59.7	0.072	-71.7	0.411	71.4
15500	0.713	57.1	1.917	-66.9	0.067	-79.5	0.427	71.5
16000	0.743	51.9	1.772	-75.6	0.065	-81.8	0.462	69.3
16500	0.766	46.1	1.633	-83.4	0.064	-83.1	0.500	62.6
17000	0.785	41.7	1.508	-92.0	0.063	-90.1	0.533	57.5
17500	0.802	37.4	1.335	-101.3	0.059	-104.7	0.580	50.0
18000	0.814	34.3	1.140	-108.9	0.053	-106.3	0.596	43.2

The information in this data is subject to change without notice.

★ AMP. PARAMETERS

 $V_{DS} = 2 V$, $I_{D} = 10 mA$

FREQUENCY	GUmax	GAmax	 S 21 ²	 S 12 ²	К	Delay	Mason's U	G1	G2
MHz	dB	dB	dB	dB		ns	dB	dB	DB
2000	24.65		13.49	-28.05	0.28	0.045	30.977	9.24	1.91
2500	22.98		13.34	-26.28	0.34	0.045	28.134	7.92	1.72
3000	21.55		13.15	-25.19	0.38	0.044	29.097	6.79	1.61
3500	20.08		12.88	-24.16	0.45	0.041	26.443	5.74	1.46
4000	18.83		12.63	-23.67	0.53	0.042	24.821	4.89	1.31
4500	17.83		12.39	-22.94	0.59	0.038	23.707	4.26	1.18
5000	17.25		12.25	-22.49	0.63	0.034	22.719	3.87	1.13
5500	16.50		12.09	-21.93	0.69	0.035	21.774	3.39	1.03
6000	16.04		12.07	-21.76	0.73	0.037	23.007	3.03	0.94
6500	15.60		12.08	-21.30	0.77	0.038	22.393	2.69	0.83
7000	15.16		12.06	-20.81	0.80	0.043	22.558	2.40	0.70
7500	14.69		11.99	-20.30	0.82	0.044	23.290	2.16	0.54
8000	14.24		11.91	-20.13	0.87	0.045	21.787	1.93	0.40
8500	13.77		11.74	-20.25	0.94	0.047	20.820	1.75	0.29
9000	13.31		11.54	-20.01	0.99	0.044	20.035	1.57	0.20
9500	12.90	14.49	11.33	-19.80	1.03	0.045	19.527	1.42	0.15
10000	12.48	13.54	11.09	-19.91	1.10	0.048	18.251	1.27	0.12
10500	12.14	13.01	10.82	-19.92	1.15	0.043	17.588	1.21	0.11
11000	11.87	12.56	10.55	-20.15	1.21	0.046	17.140	1.22	0.10
11500	11.84	12.51	10.32	-20.35	1.22	0.049	17.344	1.42	0.10
12000	11.79	12.42	10.01	-20.42	1.21	0.051	17.372	1.66	0.12
12500	11.74	12.27	9.57	-20.73	1.23	0.055	17.250	2.00	0.17
13000	11.37	11.68	8.86	-21.43	1.34	0.051	15.992	2.26	0.25
13500	10.86	11.00	8.17	-22.01	1.48	0.045	14.752	2.33	0.35
14000	10.64	10.73	7.60	-22.90	1.59	0.044	14.134	2.57	0.47
14500	10.41	10.56	6.97	-22.73	1.53	0.047	14.250	2.80	0.65
15000	9.90	10.19	6.14	-22.83	1.53	0.041	13.739	2.95	0.81
15500	9.61	10.00	5.65	-23.48	1.60	0.040	13.276	3.08	0.87
16000	9.51	10.05	4.97	-23.75	1.53	0.048	13.699	3.49	1.05
16500	9.35	9.90	4.26	-23.84	1.49	0.044	13.763	3.84	1.25
17000	9.17	9.97	3.57	-23.99	1.41	0.048	14.262	4.15	1.45
17500	8.77	9.96	2.51	-24.61	1.36	0.051	14.537	4.48	1.78
18000	7.76	8.62	1.14	-25.57	1.66	0.042	11.758	4.72	1.91

The information in this data is subject to change without notice.

NOISE PARAMETERS

 $V_{DS} = 2 V$, $I_{D} = 10 mA$

	NFmin. (dB)	Ga (dB)	Γα	P. /50	
Fleq. (GHZ)			MAG.	ANG. (deg.)	Kn/30
4.0	0.40	15.5	0.51	75	0.18
6.0	0.49	13.9	0.49	103	0.11
8.0	0.60	12.5	0.44	145	0.06
10.0	0.74	11.3	0.32	-162	0.06
12.0	0.90	10.0	0.23	-73	0.16
14.0	1.08	8.9	0.45	-5	0.36
16.0	1.30	7.8	0.60	42	0.58
18.0	1.53	6.8	0.76	78	0.68

The information in this data is subject to change without notice.

PACKAGE DIMENSIONS

6 PIN SUPER MINIMOLD (UNIT: mm)

PRECAUTION

Avoid high static voltage and electric fields, because this device is Hetero Junction field effect transistor with shottky barrier gate.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared Reflow	Package peak temperature: 235 °C or below Time: 30 seconds or less (at 210 °C) Count: 3, Exposure limit: None ^{Nete}	IR35-00-3
VPS	Package peak temperature: 215 °C or below Time: 40 seconds or less (at 200 °C) Count: 3, Exposure limit: None ^{Nete}	VP15-00-3
Wave Soldering	Soldering bath temperature: 260 °C or below Time: 10 seconds or less Count: 1, Exposure limit: None ^{Note}	WS60-00-1
Partial Heating	Pin temperature: 300 °C Time: 3 seconds or less (per side of device) Exposure limit: None ^{Note}	_

Note After opening the dry pack, keep it in a place below 25 °C and 65 % RH for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

For details of recommended soldering conditions for surface mounting, refer to information document **SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).**

[MEMO]

[MEMO]

CAUTION

The Great Care must be taken in dealing with the devices in this guide. The reason is that the material of the devices is GaAs (Gallium Arsenide), which is designated as harmful substance according to the law concerned. Keep the law concerned and so on, especially in case of removal.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
 customer designated "quality assurance program" for a specific application. The recommended applications of
 a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
 before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.