PRELIMINARY DATA SHEET

SILICON POWER MOS FIELD EFFECT TRANSISTOR NEM0899F06-30

N-CHANNEL SILICON POWER MOSFET FOR UHF-TV TRANSMITTER POWER AMPLIFIER

FEATURES

NEC

- High output, high gain, high efficiency Po = 100 W, GL = 12 dB, η D = 50 %
- $(V_{DD} = 30 \text{ V}, \text{ f} = 860 \text{ MHz}, \text{ Idq} = 150 \text{ mA} \times 2, \text{ Pin} = 40 \text{ dBm})$
- Wide band operation (f = 470 to 860 MHz)
- Internal matching circuit
- High-reliability gold electrodes
- Hermetic sealed package

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)

Parameter	Symbol	Ratings	Unit	
Drain-source voltage	Vds	60	V	
Gate-source voltage	Vgs	7	V	
Drain current (D.C.)	lo	15 ^{Note}	А	
Total power dissipation	Рт	290	W	
Thermal resistance	Rth	0.6	°C/W	
Channel temperature	Tch	200	°C	
Storage temperature	Tstg	-65 to +200	°C	

PACKAGE DRAWING (Unit: mm)

G1, G2: gate

D₁, D₂ : drain S : source

Flange is connected to the source.

Note Per side

ELECTRICAL CHARACTERISTICS (TA = 25 °C)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Gate leakage current	lgss	V _{GS} = 7 V			1	μA
Cut-off voltage	VGS(off)	V _{DS} = 5 V, I _D = 50 mA	1.5		4	V
Drain current	IDSS	V _{DS} = 60 V			2	mA
Mutual conductance	Яm	$V_{DS} = 5 \text{ V}, \text{ ID} = 3 \text{ A}, \Delta \text{ID} = 100 \text{ mA}$	2.0			S
Output power	Po	f = 860 MHz, V _{DD} = 30 V	90	100		W
Drain efficiency	η D	$I_{DQ} = 150 \text{ mA} \times 2$, $P_{in} = 40 \text{ dBm}$	48	50		%
Linear gain	G∟	$f = 860 \text{ MHz}, \text{ V}_{\text{DD}} = 30 \text{ V}$ $I_{\text{DQ}} = 150 \text{ mA} \times 2, \text{ P}_{\text{in}} = 30 \text{ dBm}$	10	12		dB

INPUT vs. OUTPUT POWER, LINEAR GAIN, DRAIN EFFICIENCY

OUTPUT POWER/DRAIN EFFICIENCY/ LINEAR GAIN vs. INPUT POWER (f = 860 MHz)

OUTPUT POWER/DRAIN EFFICIENCY/ LINEAR GAIN vs. INPUT POWER (f = 650 MHz)

2

OUTPUT POWER/DRAIN EFFICIENCY/ LINEAR GAIN vs. INPUT POWER (f = 470 MHz)

VDD dependence on Pout

ZIN, ZOUT

f	Zin (Ω)	Ζουτ (Ω)
470	2.9 – j1.3	7.1 + j5.2
550	3.6 – j4.5	8.1 + j3.0
650	5.0 – j4.8	7.3 – j1.9
750	10.4 + j1.4	4.6 + j2.9
860	5.7 + j3.0	3.9 + j3.1

APPLICATION CIRCUIT EXAMPLE (f = 860 MHz)

[MEMO]

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.