

MOS FIELD EFFECT TRANSISTOR

NP82N055CLE,NP82N055DLE,NP82N055ELE,NP82N055KLE

SWITCHING N-CHANNEL POWER MOS FET

DESCRIPTION

These products are N-channel MOS Field Effect Transistor designed for high current switching applications.

FEATURES

- Channel temperature 175 degree rated
- Super low on-state resistance

 $R_{DS(on)1}=8.4~m\Omega$ MAX. (VGs = 10 V, ID = 41 A)

 $R_{DS(on)2} = 11 \text{ m}\Omega$ MAX. (Vgs = 5.0 V, ID = 41 A)

- Low Ciss : Ciss = 4400 pF TYP.
- Built-in gate protection diode

ORDERING INFORMATION

PART NUMBER	PACKAGE		
NP82N055CLE	TO-220AB		
NP82N055DLE	TO-262		
NP82N055ELE	TO-263 (MP-25ZJ)		
NP82N055KLE	TO-263 (MP-25ZK)		

(TO-220AB)

(TO-262)

(TO-263)

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C)

	•	•	
Drain to Source Voltage (Vgs = 0 V)	Voss	55	V
Gate to Source Voltage (Vps = 0 V)	Vgss	±20	V
Drain Current (DC) (Tc = 25°C) Note1	ID(DC)	±82	Α
Drain Current (Pulse) Note2	ID(pulse)	±300	Α
Total Power Dissipation (Tc = 25°C)	PT	163	W
Total Power Dissipation (T _A = 25°C)	Рт	1.8	W
Channel Temperature	Tch	175	°C
Storage Temperature	T _{stg}	-55 to +175	°C
Single Avalanche Current Note3	las	72 / 50 / 17	Α
Single Avalanche Energy Note3	Eas	51 / 250 / 289	mJ

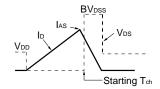
Notes 1. Calculated constant current according to MAX. allowable channel temperature.

- **2.** PW \leq 10 μ s, Duty cycle \leq 1%
- 3. Starting T_{ch} = 25°C, V_{DD} = 28 V, R_G = 25 Ω , V_{GS} = 20 \rightarrow 0 V (see Figure 4.)

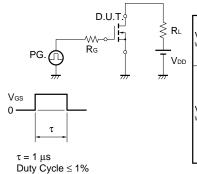
THERMAL RESISTANCE

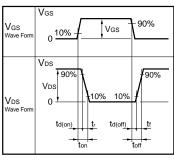
Channel to Case Thermal Resistance Rth(ch-C) 0.92 °C/W Channel to Ambient Thermal Resistance Rth(ch-A) 83.3 °C/W

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.


Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

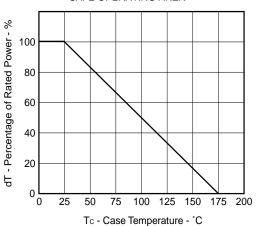
ELECTRICAL CHARACTERISTICS (TA = 25°C)


CHARACTERISTICS	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Zero Gate Voltage Drain Current	Ipss	V _{DS} = 55 V, V _{GS} = 0 V			10	μΑ
Gate Leakage Current	Igss	Vgs = ±20 V, Vps = 0 V			±10	μΑ
Gate to Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \mu\text{A}$	1.5	2.0	2.5	٧
Forward Transfer Admittance	yfs	V _{DS} = 10 V, I _D = 41 A	24	50		S
Drain to Source On-state Resistance	RDS(on)1	Vgs = 10 V, ID = 41 A		6.7	8.4	mΩ
	RDS(on)2	Vgs = 5.0 V, ID = 41 A		7.9	11	mΩ
	RDS(on)3	Vgs = 4.5 V, ID = 41 A		8.4	12	mΩ
Input Capacitance	Ciss	Vps = 25 V		4400	6600	pF
Output Capacitance	Coss	V _{GS} = 0 V f = 1 MHz		550	830	pF
Reverse Transfer Capacitance	Crss			270	490	pF
Turn-on Delay Time	td(on)	VDD = 28 V, ID = 41 A		28	61	ns
Rise Time	t r	V _G S = 10 V		16	39	ns
Turn-off Delay Time	td(off)	$R_G = 1 \Omega$		92	180	ns
Fall Time	t f			18	45	ns
Total Gate Charge 1	Q _{G1}	ID = 82 A, VDD = 44 V, VGS = 10 V		80	120	nC
Total Gate Charge 2	Q _{G2}	V _{DD} = 44 V		45	68	nC
Gate to Source Charge	Qgs	V _{GS} = 5.0 V I _D = 82 A		15		nC
Gate to Drain Charge	Q _{GD}			24		nC
Body Diode Forward Voltage	V _F (S-D)	IF = 82 A, VGS = 0 V		1.0		V
Reverse Recovery Time	trr	IF = 82 A, VGS = 0 V		47		ns
Reverse Recovery Charge	Qrr	di/dt = 100 A/μs		66		nC


TEST CIRCUIT 1 AVALANCHE CAPABILITY

$V_{GS} = 20 \rightarrow 0 \text{ V}$ $\begin{array}{c} D.U.T. \\ R_G = 25 \Omega \\ \hline \\ V_{DS} \\ \hline \\ \end{array}$ $\begin{array}{c} D.U.T. \\ \hline \\ V_{DD} \\ \hline \\ \end{array}$

TEST CIRCUIT 2 SWITCHING TIME



TEST CIRCUIT 3 GATE CHARGE

175

TYPICAL CHARACTERISTICS (TA = 25°C)

Figure 1. DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREA

P_T - Total Power Dissipation - W 150 125 100 75 50 25 0 0 25 50 75 100 125 175 150 Tc - Case Temperature - °C

Figure 2. TOTAL POWER DISSIPATION vs.

CASE TEMPERATURE

Figure.3 FORWARD BIAS SAFE OPERATING AREA

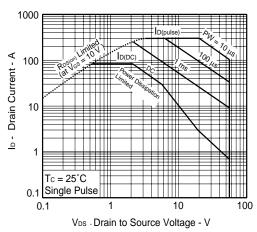


Figure 4. SINGLE AVALANCHE ENERGY DERATING FACTOR

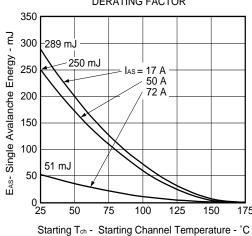
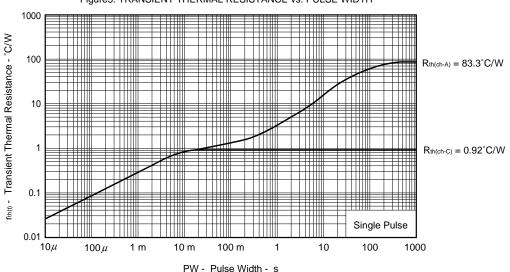



Figure 5. TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH

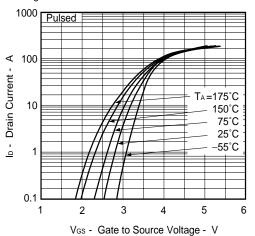


Figure 8. FORWARD TRANSFER ADMITTANCE vs.

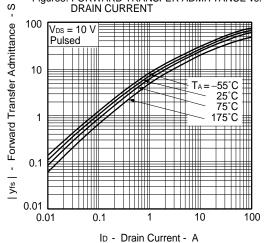


Figure 10. DRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENT

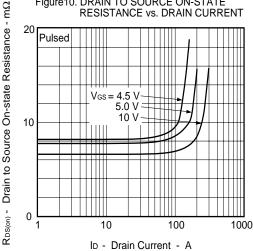
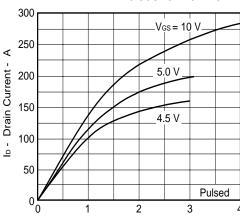



Figure 7. DRAIN CURRENT vs.
DRAIN TO SOURCE VOLTAGE

VDS - Drain to Source Voltage - V

Figure9. DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE

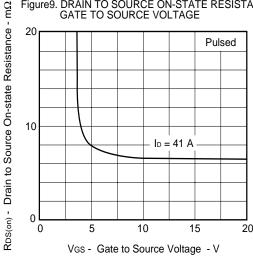
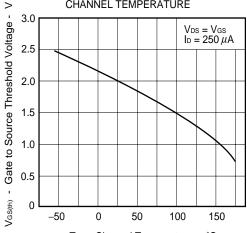
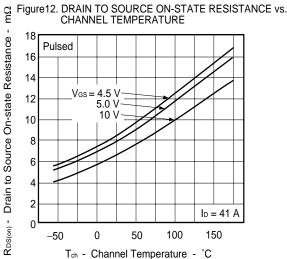
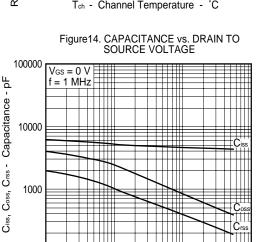
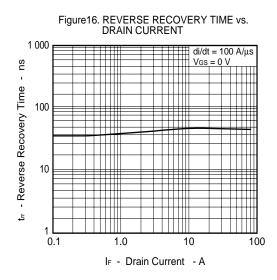
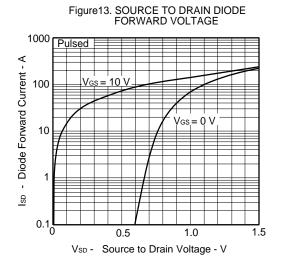
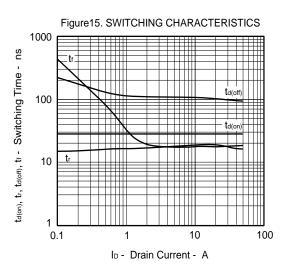





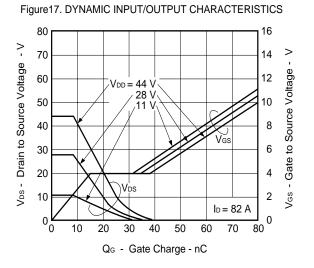
Figure 11. GATE TO SOURCE THRESHOLD VOLTAGE vs. CHANNEL TEMPERATURE

Tch - Channel Temperature - °C

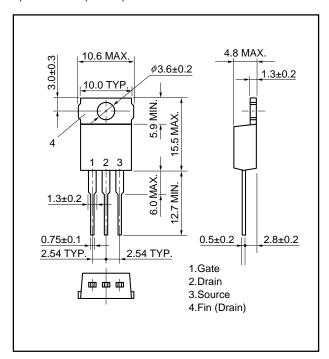


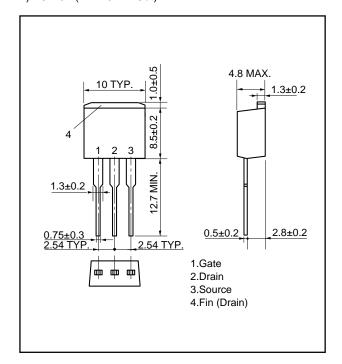

V_{DS} - Drain to Source Voltage - V


100

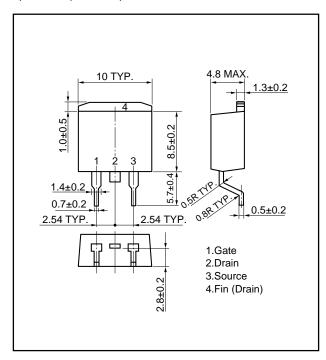

Data Sheet D14098EJ5V0DS

100 L 0.1

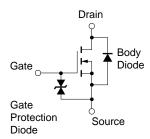




PACKAGE DRAWINGS (Unit: mm)


1) TO-220AB (MP-25)


2) TO-262 (MP-25 Fin Cut)


3) TO-263 (MP-25ZJ)

★ 4) TO-263 (MP-25ZK)

EQUIVALENT CIRCUIT

Remark The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.

- The information in this document is current as of December, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
 property rights of third parties by or arising from the use of NEC Electronics products listed in this document
 or any other liability arising from the use of such products. No license, express, implied or otherwise, is
 granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
 "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).