Power MOSFET 24 Volts, 85 Amps Single N-Channel, DPAK/IPAK

Features

- Planar HD3e Process for Fast Switching Performance
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Low Gate Charge to Minimize Switching Losses
- Pb-Free Packages are Available

Applications

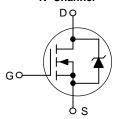
- CPU Power Delivery
- DC-DC Converters
- Low Side Switching

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Para	Symbol	Value	Unit		
Drain-to-Source Vo	Drain-to-Source Voltage				V
Gate-to-Source Vol	tage		V_{GS}	±20	V
Continuous Drain Current R _{0JA}		$T_A = 25^{\circ}C$	Ι _D	17 12	Α
(Note 1)		T _A = 85°C			
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	P _D	2.4	W
Continuous Drain Current R _{θJA}		T _A = 25°C	Ι _D	12	Α
(Note 2)	Steady	T _A = 85°C		8.8	
Power Dissipation R _{0JA} (Note 2)	State	T _A = 25°C	P _D	1.25	W
Continuous Drain Current R _{BJC}		$T_C = 25^{\circ}C$	Ι _D	85	Α
(Note 1)		T _C = 85°C		58	
Power Dissipation R _{θJC} (Note 1)		T _C = 25°C	P _D	78.1	W
Pulsed Drain Current	T _A = 25°	$C, t_p = 10 \mu s$	I _{DM}	192	А
Current Limited by P	ackage	$T_A = 25^{\circ}C$	I _{DmaxPkg}	45	Α
Operating Junction a Temperature	Operating Junction and Storage Temperature				°C
Source Current (Bod	ly Diode)	I _S	78	Α	
Drain to Source dV/d	dV/dt	6	V/ns		
Single Pulse Drain-to-Source Avalanche Energy $T_J = 25^{\circ}C$, $V_{DD} = 30$ V, $V_{GS} = 10$ V, $I_L = 13$ A _{pk} , $L = 1.0$ mH, $R_G = 25$ Ω)			EAS	85	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
- 2. Surface-mounted on FR4 board using the minimum recommended pad size.

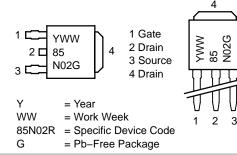


ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
24 V	5.2 mΩ @ 10 V	85 A

N-Channel



DPAK CASE 369AA STYLE2

DPAK-3 CASE 369D STYLE 2

MARKING DIAGRAM & PIN ASSIGNMENTS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	1.6	°C/W
Junction-to-TAB (Drain)	$R_{ heta JC-TAB}$	3.5	
Junction-to-Ambient - Steady State (Note 1)	$R_{ hetaJA}$	52	
Junction-to-Ambient - Steady State (Note 2)	$R_{ heta JA}$	100	

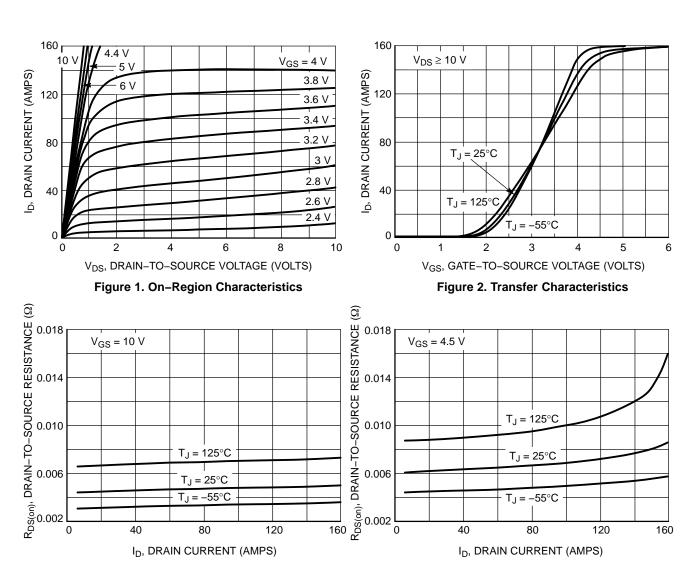
- Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					•		·
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		24	28		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /				20.5		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	T _J = 25 °C			1.5	_
		V _{DS} = 24 V	T _J = 125°C			10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 250 μΑ	1.0	1.5	2.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4		mV/°C
Drain-to-Source on Resistance	R _{DS(ON)}	V _{GS} = 10 V	I _D = 20 A		4.8	5.2	0
		V _{GS} = 4.5 V	I _D = 20 A		6.5		mΩ
Forward Transconductance	9 _{FS}	V _{DS} = 10 V, I _D	= 15 A		38		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}				2050		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 20 V			871		pF
Reverse Transfer Capacitance	C _{RSS}				359		
Total Gate Charge	Q _{G(TOT)}				17.7		
Threshold Gate Charge	Q _{G(TH)}		0.)/ 1 40.4		1.6		nC
Gate-to-Source Charge	Q_GS	$V_{GS} = 5.0 \text{ V}, V_{DS} = 1$	$0 \text{ V; I}_{D} = 10 \text{ A}$		2.6		
Gate-to-Drain Charge	Q_{GD}	1			7.1		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V};$ $I_D = 10 \text{ A}$			35.1		nC
SWITCHING CHARACTERISTICS (Note	4)						
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V},$ $I_{D} = 30 \text{ A}, R_{G} = 3.0 \Omega$			6.3		
Rise Time	t _r				77		
Turn-Off Delay Time	t _{d(OFF)}				25		ns
Fall Time	t _f				12		1

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
DRAIN-SOURCE DIODE CHARACTERISTICS								
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 V$	T _J = 25°C		0.81	1.0		
		$V_{GS} = 0 \text{ V},$ $I_{S} = 30 \text{ A}$	T _J = 125°C		0.65		V	
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, dIS/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 20 \text{ A}$			37.5		ns	
Charge Time	t _a				16.8			
Discharge Time	t _b				20.7			
Reverse Recovery Charge	Q_{RR}				27		nC	
PACKAGE PARASITIC VALUES								
Source Inductance	L _S	T _A = 25°C			2.49		nΗ	
Drain Inductance, DPAK	L _D				0.0164			
Drain Inductance, IPAK*	L _D				1.88			
Gate Inductance	L _G				3.46			
Gate Resistance	R _G				1.2		Ω	

^{*}Assume standoff of 110 mils.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTD85N02R	DPAK	
NTD85N02RG	DPAK (Pb-Free)	75 Units / Rail
NTD85N02R-001	IPAK	
NTD85N02R-1G	IPAK (Pb-Free)	800 / Tape & Reel
NTD85N02RT4	DPAK	
NTD85N02RT4G	DPAK (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

 I_D , DRAIN CURRENT (AMPS) Figure 3. On-Resistance versus Drain Current and Temperature

40

 $T_J = 125^{\circ}C$

 $T_J = 25^{\circ}C$ $T_{.1} = -55^{\circ}C$

80

120

Figure 4. On-Resistance versus Drain Current and Temperature

 $T_J = 25^{\circ}C$

 $T_J = -55^{\circ}C$

80

I_D, DRAIN CURRENT (AMPS)

120

160

40

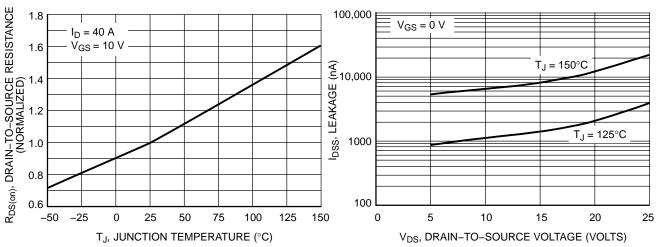
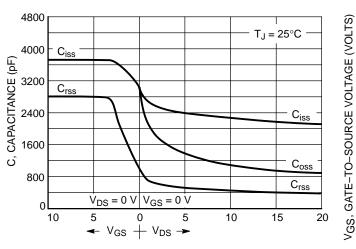
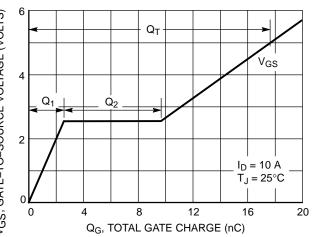
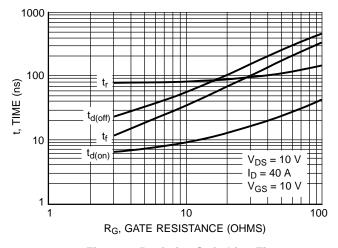




Figure 5. On-Resistance Variation with **Temperature**

Figure 6. Drain-to-Source Leakage Current versus Voltage

POWER MOSFET SWITCHING



GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-To-Source and Drain-To-Source Voltage versus Total Charge

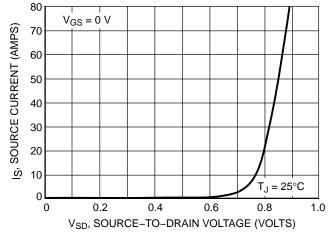


Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

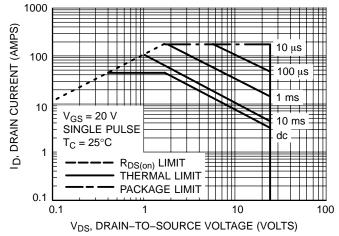


Figure 11. Maximum Rated Forward Biased Safe Operating Area

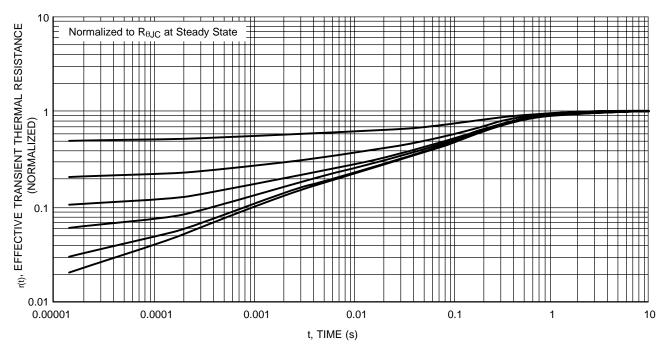


Figure 12. Thermal Response

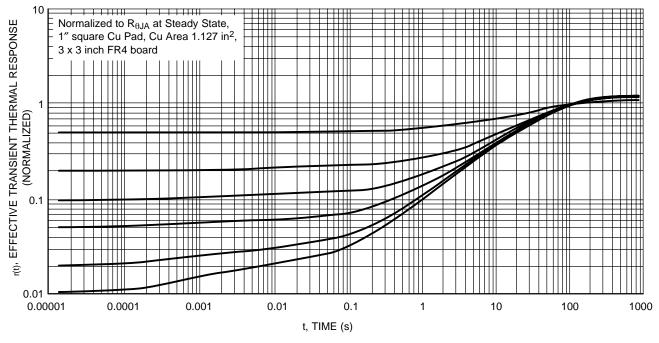
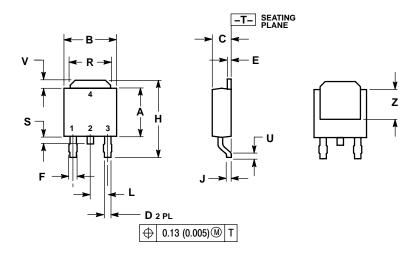
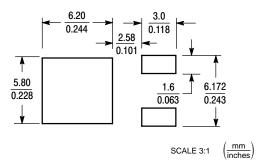



Figure 13. Thermal Response

PACKAGE DIMENSIONS

DPAK (SINGLE GUAGE)

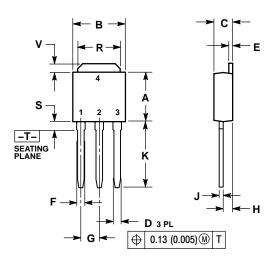
CASE 369AA-01 ISSUE A

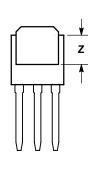


- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.025	0.035	0.63	0.89
E	0.018	0.024	0.46	0.61
F	0.030	0.045	0.77	1.14
Н	0.386	0.410	9.80	10.40
J	0.018	0.023	0.46	0.58
L	0.090	0.090 BSC 2.29 E		BSC
R	0.180	0.215	4.57	5.45
S	0.024	0.040	0.60	1.01
U	0.020		0.51	
V	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN


SOLDERING FOOTPRINT*



^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DPAK-3 CASE 369D-01 **ISSUE B**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090 BSC		2.29 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
٧	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

STYLE 2: PIN 1. GATE

- 2. DRAIN
- 3. SOURCE
- DRAIN

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative