NTGS4111P

Power MOSFET

-30 V, -4.7 A, Single P-Channel, TSOP-6

Features

- Leading -30 V Trench Process for Low R_{DS(on)}
- Low Profile Package Suitable for Portable Applications
- Surface Mount TSOP-6 Package Saves Board Space
- Improved Efficiency for Battery Applications
- Pb-Free Package is Available

Applications

- Battery Management and Switching
- Load Switching
- Battery Protection

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

MAXIMOM HATHING (1) = 23 0 diliess officiwise floted)							
Rating	Symbol	Value	Unit				
Drain-to-Source Voltage			V_{DSS}	-30	V		
Gate-to-Source Voltage			V_{GS}	±20	V		
Continuous Drain	Steady	T _A = 25°C	I _D	-3.7	Α		
Current (Note 1)	State	T _A = 85°C		-2.7			
	t ≤ 5 s T _A = 25°C			-4.7			
Power Dissipation (Note 1)	Steady T _A = 25°C State		P _D	1.25	W		
	t ≤ 5 s			2.0			
Continuous Drain	Steady T _A = 25°C		I _D	-2.6	Α		
Current (Note 2)	State $T_A = 85^{\circ}C$			-1.9			
Power Dissipation (Note 2)	T _A = 25°C		P _D	0.63	W		
Pulsed Drain Current tp = 10 μs			I_{DM}	-15	Α		
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C		
Source Current (Body Diode)			I _S	-1.7	Α		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C		

THERMAL RESISTANCE RATINGS

Rating	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	100	°C/W
Junction-to-Ambient - t ≤ 5 s (Note 1)	$R_{\theta JA}$	62.5	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	200	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).
- Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 0.006 in sq).

1

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
-30 V	38 mΩ @ –10 V	-4.7 A
00 1	68 mΩ @ -4.5 V	4.77

P-Channel

MARKING DIAGRAM & PIN ASSIGNMENT

TSOP-6 CASE 318G STYLE 1

TG = Specific Device Code

M = Date Code*
= Pb-Free Package

(Note: Microdot may be in either location)*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTGS4111PT1	TSOP-6	3000 / Tape & Reel
NTGS4111PT1G	TSOP-6 (Pb-Free)	3000 / Tape& Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTGS4111P

ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise noted)

OFF CHARACTERISTICS Drain-toSource Breakdown Voltage Temperature Coefficient V(BR)DSS (VB) VGS = 0 V, Ib = -250 μA -30 V V 2 Tornin-toSource Breakdown Voltage Temperature Coefficient V(BR)DSS (VB) VGS = 0 V, Ib = -250 μA -17 -100 mV/°C 2 Gate - Tor-Source Leakage Current Ibss VGS = 0 V, VGS = 224 V TJ = 25°C TJ = 125°C -100 nA ON CHARACTERISTICS (Note 3) 3 VGS = 0 V, VGS = 220 V ±1000 nA ON CHARACTERISTICS (Note 3) VGS = VDS - Ib = -250 μA -1.0 -3.0 V Origin - Io-Source On Resistance VGS(TH) VGS = VDS - Ib = -250 μA -1.0 -3.0 MV Proward Transconductance PGS(M) VGS = VDS - Ib = -250 μA -1.0 -3.0 MV Proward Transconductance PGS(M) VGS = VDS - Ib = -250 μA -1.0 -3.0 MV Proward Transconductance PGS(M) VGS = -10 V, Ib = -3.7 A 488 110 MG Poward Transconductance PGS VGS = -10 V, Ib = -3.7 A 40.0 5.0 MG Input Capacitanc	Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Drain-to-Source Breakdown Voltage Temperature Coefficient Temperature Coef	OFF CHARACTERISTICS	-			-	-	-
Drain-to-Source Breakdown Voltage Temperature Coefficient Temp	Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-30			V
Vos = -24 \ Vos = -25 \ Vos = -26 \ Vos = -27 \ Vos = -26 \ Vos = -27 \ Vo		V _{(BR)DSS} /T _J			-17		mV/°C
Selection	Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, \qquad T_{J} = 25^{\circ}\text{C}$			-1.0	μΑ
ON CHARACTERISTICS (Note 3) VGS(TH) VGS = VDS, ID = -250 μA -1.0 -3.0 V Negative Threshold Temperature Coefficient VGS(TH)/TJ VGS = -10 V, ID = -3.7 A 5.0 mV/FC Drain-to-Source On Resistance PBS(on) VGS = -4.5 V, ID = -3.7 A 38 60 mV/FC Forward Transconductance gFS VGS = -10 V, ID = -3.7 A 6.0 5 Forward Transconductance gFS VGS = -10 V, ID = -3.7 A 6.0 5 CHARGES, CAPACITANCES AND GATE RESISTANCE Input Capacitance CGSS VGS = -10 V, ID = -3.7 A 6.0 5 Output Capacitance CGSS VGS = -10 V, ID = -3.7 A 6.0 5 Reverse Transfer Capacitance CGSS VGS = -15 V, ID = -3.7 A 6.0 7 Total Gate Charge QG(TOT) VGS = -15 V, VDS = -15 V, ID = -15			$V_{DS} = -24 \text{ V}$ $T_{J} = 125^{\circ}\text{C}$			-100	
Negative Threshold Voltage V _{GS(TH)} V _{GS = V_{DS}} I _D = -250 μA -1.0 -3.0 V	Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA
Negative Threshold Temperature Coefficient V _{GS} (TH)/T _J V _{GS} = -10 V, I _D = -3.7 A 38 60 mΩ mΩ N N N N N N N N N	ON CHARACTERISTICS (Note 3)						
$ \begin{array}{ c c c c c c c c } \hline Drain-to-Source On Resistance & R_{DS(on)} & V_{GS} = -10 \ V, \ I_D = -3.7 \ A & 38 & 60 & m\Omega \\ \hline V_{GS} = -4.5 \ V, \ I_D = -2.7 \ A & 6.8 & 110 & 8 \\ \hline Forward Transconductance & g_{FS} & V_{DS} = -10 \ V, \ I_D = -3.7 \ A & 6.0 & 8 \\ \hline \hline CHARGES, CAPACITANCES AND GATE RESISTANCE \\ \hline Input Capacitance & C_{ISS} & & & & & & & & & & & & & & & & & & $	Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-1.0		-3.0	V
Forward Transconductance Series Vas = -4.5 V, Ib = -2.7 A 68 110	Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J			5.0		mV/°C
Forward Transconductance GFS VDS = -10 V, ID = -3.7 A 6.0 S S	Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -3.7 \text{ A}$		38	60	mΩ
			$V_{GS} = -4.5 \text{ V}, I_D = -2.7 \text{ A}$		68	110	
$ \begin{array}{ c c c c c }\hline \mbox{Input Capacitance} & C_{ISS} \\ \hline \mbox{Output Capacitance} & C_{CSS} \\ \hline \mbox{Output Capacitance} & C_{CSS} \\ \hline \mbox{Reverse Transfer Capacitance} & C_{RSS} \\ \hline \mbox{Reverse Transfer Capacitance} & C_{RSS} \\ \hline \mbox{Total Gate Charge} & Q_{G(TOT)} \\ \hline \mbox{Total Gate Charge} & Q_{G(TOT)} \\ \hline \mbox{Gate-to-Source Charge} & Q_{G} \\ \hline \mbox{Gate-to-Source Charge} & Q_{G} \\ \hline \mbox{Gate-to-Drain Charge} & Q_{G} \\ \hline \mbox{SWITCHING CHARACTERISTICS, VGS = -10 V (Note 4)} \\ \hline \mbox{Turn-On Delay Time} & t_{d(ON)} \\ \hline \mbox{Fall Time} & t_{f} \\ \hline \mbox{SWITCHING CHARACTERISTICS, VGS = -4.5 V (Note 4)} \\ \hline \mbox{SWITCHING CHARACTERISTICS, VGS = -4.5 V (Note 4)} \\ \hline \mbox{SWITCHING CHARACTERISTICS, VGS = -4.5 V (Note 4)} \\ \hline \mbox{SWITCHING CHARACTERISTICS, VGS = -4.5 V (Note 4)} \\ \hline \mbox{Turn-On Delay Time} & t_{d(ON)} \\ \hline \mbox{Rise Time} & t_{f} \\ \hline \mbox{SWITCHING CHARACTERISTICS, VGS = -4.5 V (Note 4)} \\ \hline \mbox{Turn-Off Delay Time} & t_{d(OFF)} \\ \hline \mbox{Fall Time} & t_{f} \\ \hline \mbox{SWITCHING CHARACTERISTICS, VGS = -4.5 V (Note 4)} \\ \hline \mbox{Turn-Off Delay Time} & t_{d(OFF)} \\ \hline \mbox{Fall Time} & t_{f} \\ \hline \mbox{Up} Surper Surp$	Forward Transconductance	g _{FS}	$V_{DS} = -10 \text{ V}, I_D = -3.7 \text{ A}$		6.0		S
$ \begin{array}{ c c c c c } \hline \text{Output Capacitance} & C_{OSS} \\ \hline \text{Reverse Transfer Capacitance} & C_{RSS} \\ \hline \text{Reverse Transfer Capacitance} & C_{RSS} \\ \hline \hline \text{Total Gate Charge} & Q_{G(TOT)} \\ \hline \text{Total Gate Charge} & Q_{G(TH)} \\ \hline \text{Gate-to-Source Charge} & Q_{GS} \\ \hline \text{Gate-to-Drain Charge} & Q_{GD} \\ \hline \hline \text{SWITCHING CHARACTERISTICS, VGS} = -10 \text{ V} (\text{Note 4}) \\ \hline \text{Turn-On Delay Time} & t_f \\ \hline \text{Turn-Off Delay Time} & t_f \\ \hline \text{Turn-On Delay Time} & t_f \\ \hline \text{SWITCHING CHARACTERISTICS, VGS} = -4.5 \text{ V} (\text{Note 4}) \\ \hline \text{SWITCHING CHARACTERISTICS, VGS} = -4.5 \text{ V} (\text{Note 4}) \\ \hline \text{SWITCHING CHARACTERISTICS, VGS} = -4.5 \text{ V} (\text{Note 4}) \\ \hline \text{Turn-Off Delay Time} & t_f \\ \hline \text{Turn-Off Delay Time} & t_f \\ \hline \text{Turn-On Delay Time} & t_f \\ \hline \text{Turn-Off Delay Time} & t_f \\ \hline Turn-Off Delay Ti$	CHARGES, CAPACITANCES AND GATE RE	SISTANCE					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	C _{ISS}			750		pF
Reverse Transfer Capacitance C_{RSS} 105 105 Total Gate Charge $Q_{G(TOT)}$ $V_{GS} = -10 \text{ V}, V_{DD} = -15 \text{ V}, V_{DD} = -3.7 \text{ A}} 0.8 15.25 32 nC Gate-to-Darin Charge Q_{GD} Q_{GD} 3.4 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 $	Output Capacitance	C _{OSS}			140		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{RSS}	VDS - 10 V		105		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q _{G(TOT)}			15.25	32	nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Threshold Gate Charge	Q _{G(TH)}	Vce = -10 V. Vpp = -15 V.		0.8		
	Gate-to-Source Charge		$I_D = -3.7 \text{ A}$		2.6		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-to-Drain Charge	Q _{GD}			3.4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERISTICS, VGS = -1	0 V (Note 4)				•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(ON)}			9.0	17	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time		Vce = -10 V. Vpp = -15 V.		9.0	18	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(OFF)}	$I_D = -1.0 \text{ A}, R_G = 6.0 \Omega$		38	85	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time	1 .			22	45	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERISTICS, VGS = -4	.5 V (Note 4)			-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(ON)}			11	20	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time		Vcc = -4.5 V. Vnn = -15 V.		15	28	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(OFF)}	$I_D = -1.0 \text{ A}, R_G = 6.0 \Omega$		28	56	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time	1			22	50	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DRAIN - SOURCE DIODE CHARACTERIST	cs			•	•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
	Forward Diode Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, \qquad T_{J} = 25^{\circ}\text{C}$		-0.76	-1.2	V
Charge Time t_a $V_{GS} = 0 V$ 9.0					-0.60		1
Charge Time t_a $V_{GS} = 0 V$ 9.0	Reverse Recovery Time	t _{RR}			17	40	ns
	Charge Time	ta	V _{GS} = 0 V		9.0		1
	Discharge Time		$dI_S/dt = 100 \text{ A/}\mu\text{s}, I_S = -1.0 \text{ A}$		8.0		

Reverse Recovery Charge

 Q_{RR}

8.0

nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

 $V_{DS} \ge -10 \text{ V}$ 11 -ID, DRAIN CURRENT (AMPS) 10 8 7 6 3 2 $T_J = -55^{\circ}C$ 0 1.5 3 3.5 4 4.5 -V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

-GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source Voltage vs. Total **Gate Charge**

Figure 9. Maximum Rated Forward Biased Safe Operating Area

Figure 10. Diode Forward Voltage vs. Current

Figure 11. FET Thermal Response

NTGS4111P

PACKAGE DIMENSIONS

TSOP-6 CASE 318G-02 **ISSUE T**

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH,
- PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.90	1.00	1.10	0.035	0.039	0.043
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.25	0.38	0.50	0.010	0.014	0.020
С	0.10	0.18	0.26	0.004	0.007	0.010
D	2.90	3.00	3.10	0.114	0.118	0.122
E	1.30	1.50	1.70	0.051	0.059	0.067
е	0.85	0.95	1.05	0.034	0.037	0.041
L	0.20	0.40	0.60	0.008	0.016	0.024
HE	2.50	2.75	3.00	0.099	0.108	0.118
θ	0°	_	10°	0°	-	10°

- STYLE 1: PIN 1. DRAIN
 - 2. DRAIN GATE
 - 3.
 - DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and ware registered traderlanks of semiconduction. Components industries, EC (SCILLC) solicit eservices the right to finate changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specificalized so vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative