Power MOSFET

-12 V, -7.0 A, Single P-Channel, 1.6x1.6x0.5 mm UDFN6 Package

Features

- Ultra Low R_{DS(on)}
- UDFN Package with Exposed Drain Pads for Excellent Thermal Conduction
- Low Profile UDFN 1.6 x 1.6 x 0.5 mm for Board Space Saving
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

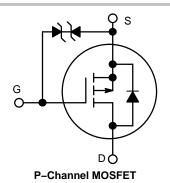
Applications

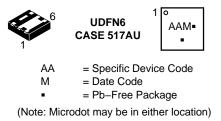
- Optimized for Power Management Applications for Portable Products, Such as Smart Phones and Media Tablets
- Battery Switch
- High Side Load Switch

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

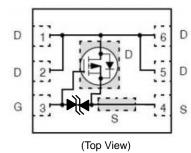
Pa	Parameter			Value	Unit
Drain-to-Source Vo	Drain-to-Source Voltage			-12	V
Gate-to-Source Vol	tage		V _{GS}	±10	V
Continuous Drain	Steady	T _A = 25°C	Ι _D	-7.0	А
Current (Note 1)	State	$T_A = 85^{\circ}C$		-5.1	
	t ≤ 5 s	$T_A = 25^{\circ}C$		-10.5	
Power Dissipa- tion (Note 1)	Steady State	$T_A = 25^{\circ}C$	PD	1.71	W
	t ≤ 5 s	$T_A = 25^{\circ}C$	1	3.83	
Continuous Drain	Steady State	$T_A = 25^{\circ}C$	Ι _D	-4.4	А
Current (Note 2)	State	T _A = 85°C	1	-3.1	
Power Dissipation (Note 2)	$T_A = 25^{\circ}C$	PD	0.66	W
Pulsed Drain Curre	Pulsed Drain Current $tp = 10 \ \mu s$		I _{DM}	-21	А
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode) (Note 2)			۱ _S	-1.7	А
Lead Temperature f (1/8" from case for		g Purposes	ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu.


ON Semiconductor®

www.onsemi.com


MOSFET					
V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX			
	24 mΩ @ –4.5 V	–7.0 A			
	27 mΩ @ –3.7 V	-6.6 A			
–12 V	30 mΩ @ –3.3 V	-6.3 A			
	36 mΩ @ –2.5 V	–5.7 A			
	70 mΩ @ –1.8 V	–4.1 A			

MARKING DIAGRAM

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient – Steady State (Note 3)	R _{θJA}	72	
Junction-to-Ambient – t \leq 5 s (Note 3)	R_{\thetaJA}	32.6	°C/W
Junction-to-Ambient – Steady State min Pad (Note 4)	R_{\thetaJA}	190.4	

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Co	ndition	Min	Тур	Max	Units
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I	_D = -250 μA	-12			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = -250 μA	, ref to 25°C		7.3		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$ $V_{DS} = -9.6 V$	$T_J = 25^{\circ}C$			-1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	/ _{GS} = ±10 V			±10	μΑ

ON CHARACTERISTICS (Note 5)

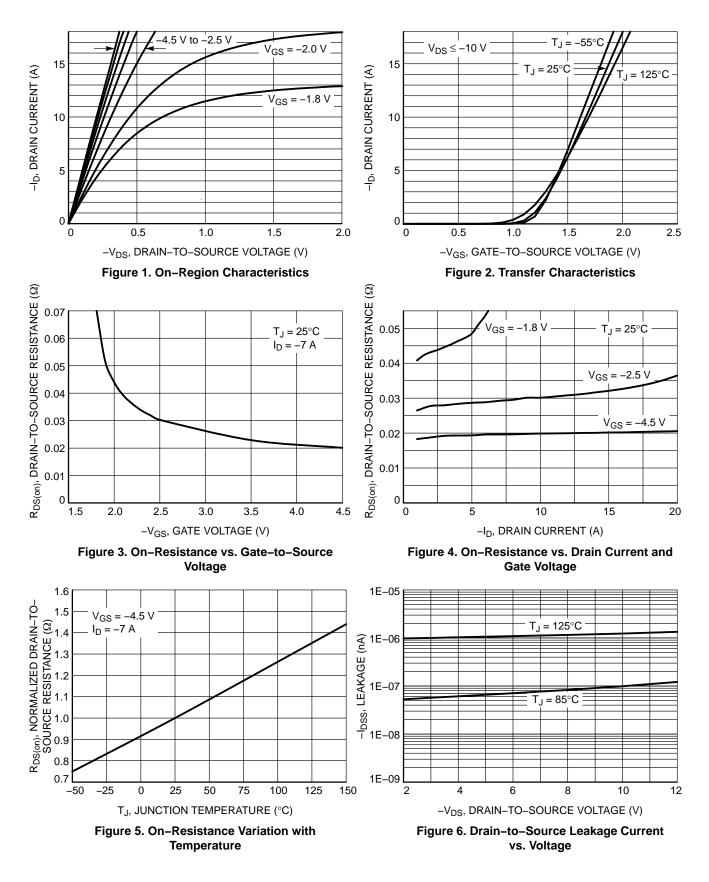
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -250 \ \mu A$	-0.4		-1.0	V
Negative Threshold Temp. Coefficient	V _{GS(TH)} /T _J			3.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -4.5$ V, $I_D = -7.0$ A		20	24	mΩ
		$V_{GS} = -3.7$ V, $I_D = -6.6$ A		22	27	
		$V_{GS} = -3.3 \text{ V}, \text{ I}_{D} = -5.7 \text{ A}$		24	30	
		$V_{GS} = -2.5 \text{ V}, \text{ I}_{D} = -5.1 \text{ A}$		29	36	
		$V_{GS} = -1.8$ V, $I_D = -2.0$ A		44	70	
Forward Transconductance	9fs	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -7.0 \text{ A}$		21.8		S

CHARGES, CAPACITANCES & GATE RESISTANCE

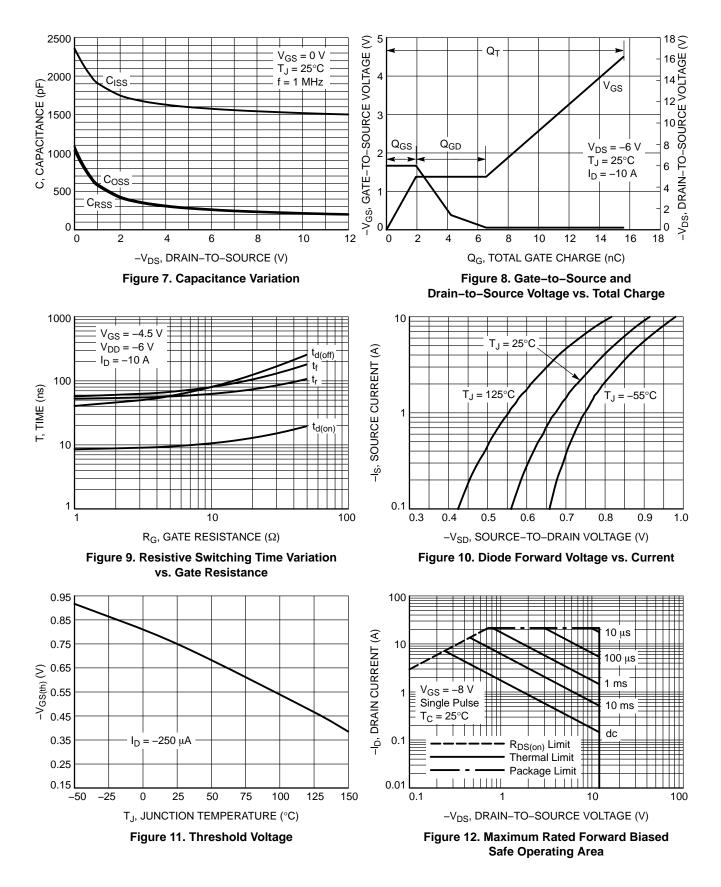
Input Capacitance	C _{ISS}		1570	pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 V, f = 1 MHz, V_{DS} = -6.0 V$	200	
Reverse Transfer Capacitance	C _{RSS}		240	
Total Gate Charge	Q _{G(TOT)}		15.8	nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -6.0 \text{ V};$ $I_{D} = -7.0 \text{ A}$	0.7	
Gate-to-Source Charge	Q _{GS}	$I_{\rm D} = -7.0$ A	1.9	
Gate-to-Drain Charge	Q _{GD}		4.6	

SWITCHING CHARACTERISTICS (Note 6)

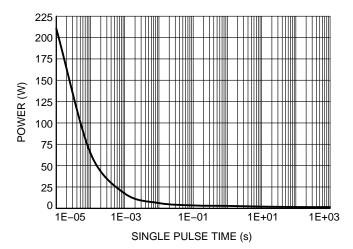
Turn-On Delay Time	t _{d(ON)}			8.5		ns
Rise Time	tr	$V_{GS} = -4.5 \text{ V}, V_{DD} = -6 \text{ V},$ $I_D = -7.0 \text{ A}, \text{ R}_G = 1 \Omega$		52.5		
Turn-Off Delay Time	t _{d(OFF)}	$I_{\rm D} = -7.0 {\rm A}, {\rm R}_{\rm G} = 1 {\Omega}$		40		
Fall Time	t _f			59		
DRAIN-SOURCE DIODE CHARAC	TERISTICS					
Famuland Diada Maltana	14	T 0500	1	0.74	4.0	M

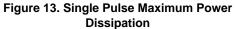

Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$	T _J = 25°C	0.71	1.0	V
		I _S = -1.7 A	$T_J = 125^{\circ}C$	0.58		

5. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.


6. Switching characteristics are independent of operating junction temperatures.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

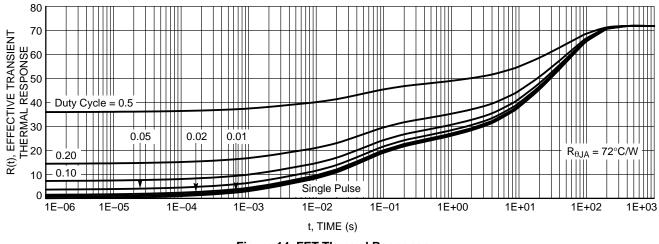
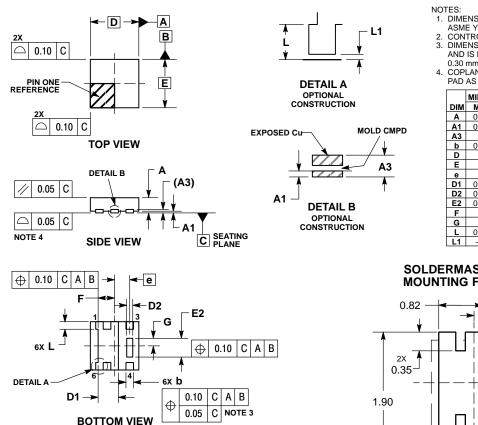


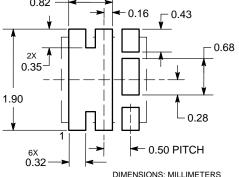
Figure 14. FET Thermal Response


DEVICE ORDERING INFORMATION

Device	Package	Shipping [†]
NTLUS3C18PZTAG	UDFN6 (Pb-Free)	3000 / Tape & Reel
NTLUS3C18PZTBG	UDFN6 (Pb–Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS


UDFN6 1.6x1.6, 0.5P CASE 517AU ISSUE O

- 1. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND
- 0.30 mm FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS				
DIM	MIN MAX				
Α	0.45	0.55			
A1	0.00	0.05			
A3	0.13	REF			
b	0.20	0.30			
D	1.60	BSC			
Е	1.60	BSC			
е	0.50	BSC			
D1	0.62	0.72			
D2	0.15	0.25			
E2	0.57	0.67			
F	0.55 BSC				
G	0.25 BSC				
L	0.20	0.30			
L1		0.15			

SOLDERMASK DEFINED **MOUNTING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative