PHP7N40E, PHB7N40E

FEATURES

- Repetitive Avalanche Rated
- Fast switching
- Stable off-state characteristics
- High thermal cycling performance
- Low thermal resistance

SYMBOL

QUICK REFERENCE DATA

$$V_{\text{DSS}}$$
 = 400 V
 I_{D} = 7.2 A
 $R_{\text{DS(ON)}} \leq$ 1 Ω

GENERAL DESCRIPTION

N-channel, enhancement mode field-effect power transistor, intended for use in off-line switched mode power supplies, T.V. and computer monitor power supplies, d.c. to d.c. converters, motor control circuits and general purpose switching applications.

The PHP7N40E is supplied in the SOT78 (TO220AB) conventional leaded package. The PHB7N40E is supplied in the SOT404 surface mounting package.

PINNING

PIN	DESCRIPTION	
1	gate	
2	drain ¹	
3	source	
tab	drain	

SOT78 (TO220AB)

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DSS}	Drain-source voltage	T _i = 25 °C to 150°C	-	400	V
V _{DGR}	Drain-gate voltage	$T_{i} = 25 \text{ °C to } 150 \text{ °C}; R_{GS} = 20 \text{ k}\Omega$	-	400	V
V _{GS}	Gate-source voltage	,	-	± 30	V
I _D	Continuous drain current	$T_{mb} = 25 \ ^{\circ}C; V_{GS} = 10 \ V$	-	7.2	A
		$T_{mb} = 100 \ ^{\circ}C; V_{GS} = 10 \ V$	-	4.6	A
I _{DM}	Pulsed drain current	$T_{mb} = 25 \ ^{\circ}C$	-	29	A
I _{DM} P _D _		$T_{mb}^{mb} = 25 \degree C$	-	125	W
T _j , T _{stg}	Operating junction and storage temperature range		- 55	150	°C

PHP7N40E, PHB7N40E

AVALANCHE ENERGY LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
E _{AS}	Non-repetitive avalanche energy	Unclamped inductive load, $I_{AS} = 4.8 \text{ A}$; $t_p = 0.23 \text{ ms}$; $T_j \text{ prior to avalanche} = 25^{\circ}\text{C}$; $V_{DD} \leq 50 \text{ V}$; $R_{GS} = 50 \Omega$; $V_{GS} = 10 \text{ V}$; refer to fig:17	-	290	mJ
E _{AR}	Repetitive avalanche energy ¹	$I_{AR} = 7.2 \text{ A}; t_p = 2.5 \mu\text{s}; T_j \text{ prior to}$ avalanche = 25°C; $R_{GS} = 50 \Omega; V_{GS} = 10 \text{ V};$ refer to fig:18	-	9.4	mJ
I _{AS} , I _{AR}	Repetitive and non-repetitive avalanche current		-	7.2	A

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{th j-mb}	Thermal resistance junction to mounting base		-	-	1	K/W
R _{th j-a}		SOT78 package, in free air SOT404 package, pcb mounted, minimum footprint	-	60 50	-	K/W K/W

¹ pulse width and repetition rate limited by T_j max.

PHP7N40E, PHB7N40E

ELECTRICAL CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; \text{ I}_{D} = 0.25 \text{ mA}$	400	-	-	V
$\Delta V_{(BR)DSS}$ / ΔT_{j}	Drain-source breakdown voltage temperature coefficient	$V_{\text{DS}} = V_{\text{GS}}; I_{\text{D}} = 0.25 \text{ mA}$	-	0.1	-	%/K
$\begin{array}{l} R_{\text{DS(ON)}} \\ V_{\text{GS(TO)}} \\ g_{\text{fs}} \\ I_{\text{DSS}} \end{array}$	Drain-source on resistance Gate threshold voltage Forward transconductance Drain-source leakage current	$V_{DS} = 320 \text{ V}; V_{GS} = 0 \text{ V}; T_i = 125 ^{\circ}\text{C}$	- 2.0 2 -	0.7 3.0 4 1 30	1 4.0 - 25 250	Ω > S μΑ μΑ
$\begin{matrix} \textbf{I}_{\text{GSS}} \\ \textbf{Q}_{g(\text{tot})} \\ \textbf{Q}_{gs} \\ \textbf{Q}_{gd} \end{matrix}$	Gate-source leakage current Total gate charge Gate-source charge Gate-drain (Miller) charge	$V_{GS}^{-} = \pm 30 \text{ V}; V_{DS}^{-} = 0 \text{ V}$ $I_{D} = 7.2 \text{ A}; V_{DD} = 320 \text{ V}; V_{GS} = 10 \text{ V}$		10 52 3 26	200 62 5 30	nA nC nC nC
$\begin{array}{c} t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ t_{f} \end{array}$	Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time	$V_{DD} = 200 \text{ V}; \text{ R}_{D} = 27 \Omega;$ $\text{R}_{G} = 12 \Omega$	- - -	12 33 93 42	- - -	ns ns ns ns
L _d L _d	Internal drain inductance Internal drain inductance	Measured from tab to centre of die Measured from drain lead to centre of die (SOT78 package only)	-	3.5 4.5	-	nH nH
L _s	Internal source inductance	Measured from source lead to source bond pad	-	7.5	-	nH
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Feedback capacitance	$V_{GS} = 0 V; V_{DS} = 25 V; f = 1 MHz$	- - -	620 108 63	- - -	pF pF pF

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _S	Continuous source current (body diode)	$T_{mb} = 25^{\circ}C$	-	-	7.2	A
I _{SM}	Pulsed source current (body diode)	$T_{mb} = 25^{\circ}C$	-	-	29	A
V_{SD}	Diode forward voltage	I _s = 7.2 A; V _{gs} = 0 V	-	-	1.2	V
t _{rr} Q _{rr}	Reverse recovery time Reverse recovery charge	$I_{s} = 7.2 \text{ A}; V_{GS} = 0 \text{ V}; \text{ dl/dt} = 100 \text{ A/}\mu\text{s}$	-	270 3.3	-	ns μC

PHP7N40E, PHB7N40E

PowerMOS transistors Avalanche energy rated

Normalised Power Derating PD% Transient thermal impedance (K/W) 120 Zth j-mb D'= 110 100 02 90 80 0.1 70 60 50 40 0.01 pulse 30 20 10 0.001 └ 1us 'rnn 0 20 80 Tmb∕°C 100 120 140 10us 100us 1ms 40 60 10ms 100ms 0 tp, pulse width (s) Fig.1. Normalised power dissipation. Fig.4. Transient thermal impedance. $PD\% = 100 \cdot P_{D}/P_{D 25 \circ C} = f(T_{mb})$ $Z_{th j-mb} = f(t); parameter D = t_r/T$ Normalised Current Derating ID% ID, Drain current (Amps) 120 20 10 V Tj = 25℃ 110 7 V 100 90 15 6.5 V 80 6 V 70 60 10 5.5 V 50 40 5 V 30 5 VGS = 4.5 V 20 10 0 0) ˈˈˈˈˈ Tmb / °C 10 15 20 VDS, Drain-Source voltage (Volts) ò 20 40 60 100 120 140 30 0 5 25 Fig.2. Normalised continuous drain current. Fig.5. Typical output characteristics. $ID\% = 100 \cdot I_D / I_{D25 \ C} = f(T_{mb}); \text{ conditions: } V_{GS} \ge 10 \text{ V}$ $I_D = f(V_{DS})$; parameter V_{GS} RDS(on), Drain-Source on resistance (Ohms) ID Drain current (Amps 100 2.5 4.5 V 5 V 5.5 V VGS = 6 VTj = 25℃ 6.5 V 2 tp = 10 us 7 V 10 10 V 1.5 100 u 1 1 ms 1 10 ms 0.5 0.1 0 100 1000 VDS, Drain-source voltage (Volts) 10 10000 10 ID, Drain current (Amps) 20 15 5 Fig.3. Safe operating area. $T_{mb} = 25 \degree C$ $I_D \& I_{DM} = f(V_{DS}); I_{DM}$ single pulse; parameter t_p Fig.6. Typical on-state resistance. $R_{DS(ON)} = f(I_D)$; parameter V_{GS}

PHP7N40E, PHB7N40E

PHP7N40E, PHB7N40E

PowerMOS transistors Avalanche energy rated

VGS, Gate-Source voltage (Volts) IF, Source-Drain diode current (Amps) 15 20 ID = 7.2 A VGS = 0 V240 V Tj = 25 ℃ VDD = 320 V 15 80 \ 10 10 150°C / Ti = 25℃ 5 5 0 0 0.4 0.6 0.8 1 VSDS, Source-Drain voltage (Volts) 70 80 10 20 30 40 50 60 0 0.2 1.2 0 1.4 Qg, Gate charge (nC) Fig.13. Typical turn-on gate-charge characteristics. Fig.16. Source-Drain diode characteristic. $V_{GS} = f(Q_G)$; parameter V_{DS} $I_F = f(V_{SDS})$; parameter T_i Switching times (ns) 1000 VDD = 200 V VGS = 10 V Non-repetitive Avalanche current, IAS (A) 10 -----RD = 27 Ohms Tj = 25℃ 25 C Tj prior to avalanche = 125 C 100 td(off) -----1 VDS ID PHP7N40F 0.1 td(on 1E-03 1E-06 1E-05 1E-04 1E-02 10 20 30 40 RG, Gate resistance (Ohms) 0 10 50 60 Avalanche time, tp (s) Fig.14. Typical switching times; $t_{d(on)}$, t_r , $t_{d(off)}$, $t_f = f(R_G)$ Fig.17. Maximum permissible non-repetitive avalanche current (I_{AS}) versus avalanche time (t_p); unclamped inductive load Normalised Drain-source breakdown voltage 1.15 V(BR)DSS @ Tj Maximum Repetitive Avalanche Current, IAR (A) V(BR)DSS @ 25 C 10 1 1 1 1 1 1 1 1.1 Tj prior to avalanche = 25 C 1.05 125 C 1 1 0.1 0.95 0.9 PHP7N40E 0.01 1E-06 1E-05 1E-04 1E-03 0.85 -100 1E-02 0 0 50 Tj, Junction temperature (C) 100 150 -50 Avalanche time, tp (s) Fig.15. Normalised drain-source breakdown voltage; Fig.18. Maximum permissible repetitive avalanche current (I_{AR}) versus avalanche time (t_p) $V_{(BR)DSS}/V_{(BR)DSS 25 \ ^{\circ}C} = f(T_j)$

PHP7N40E, PHB7N40E

MECHANICAL DATA

Notes

- Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to prevent damage to MOS gate oxide.
 Refer to mounting instructions for SOT78 (TO220) envelopes.
 Epoxy meets UL94 V0 at 1/8".

PHP7N40E, PHB7N40E

MECHANICAL DATA

MOUNTING INSTRUCTIONS

Notes

- Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to prevent damage to MOS gate oxide.
 Epoxy meets UL94 V0 at 1/8".

PHP7N40E, PHB7N40E

DEFINITIONS

Data sheet status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			
Limiting values				
or more of the limiting val operation of the device at this specification is not im	in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one ues may cause permanent damage to the device. These are stress ratings only and these or at any other conditions above those given in the Characteristics sections of aplied. Exposure to limiting values for extended periods may affect device reliability.			
Application information				
Where application information is given, it is advisory and does not form part of the specification.				
© Philips Electronics N.V. 1998				
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.				
The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other				

industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.