DISCRETE SEMICONDUCTORS

Product specification File under Discrete Semiconductors, SC07 April 1989

PN4391 to 4393

DESCRIPTION

Symmetrical silicon n-channel junction FETs in plastic TO-92 envelopes. They are intended for applications such as analog switches, choppers, commutators etc.

PINNING

- 1 = gate
- 2 = source
- 3 = drain

Note: Drain and source are interchangeable.

QUICK REFERENCE DATA

Drain-source voltage	$\pm V_{DS}$	max.		40		V
Total power dissipation						
up to $T_{amb} = 25 \ ^{\circ}C$	P _{tot}	max.	360			mW
			PN4391	PN4392	PN4393	
Drain current						-
$V_{DS} = 20 \text{ V}; V_{GS} = 0$	I _{DSS}	min.	50	25	5	mA
Gate-source cut-off voltage						
		min.	4	2	0.5	V
V _{DS} = 20 V; I _D = 1 nA	–V _{GS off}	max.	10	5	3	V
Drain-source on-resistance						
$I_{D} = 1 \text{ mA}; V_{GS} = 0$	R _{DS on}	max.	30	60	100	Ω

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	$\pm V_{\text{DS}}$	max.	40	V
Gate-source voltage	$-V_{GSO}$	max.	40	V
Gate-drain voltage	$-V_{GDO}$	max.	40	V
Forward gate current (DC)	l _G	max.	50	mA
Total power dissipation				
up to $T_{amb} = 25 \ ^{\circ}C$	P _{tot}	max.	360	mW
Storage temperature range	T _{stg}		-65 to+150	°C
Junction temperature	Тj	max.	150	°C

3.0 V

 100Ω

0.4 V

V

V

10

30

0.4

5.0

60

0.4

max.

max.

max.

max.

max.

N-channel silicon field-effect transistors

PN4391 to 4393

THERMAL RESIST	ANCE						
From junction to an	nbient in free air		R _{th j-a}	=	3	50	K/W
STATIC CHARACT							
T _j = 25 °C unless ot	herwise specified						
				PN4391	PN4392	PN4393	
Reverse gate curre	nt						-
$-V_{GS} = 20 \text{ V}; \text{ V}_{DS}$	_S = 0	-I _{GSS}	max.	1.0	1.0	1.0	nA
$-V_{GS} = 20 \text{ V}; \text{ V}_{DS}$	_S = 0						
T _{amb} = 100 °C		-I _{GSS}	max.	200	200	200	nA
Drain cut-off currer	t						
–V _{GS} = 12 V		I _{DSX}	max.	1.0			nA
$-V_{GS} = 7 V V_{I}$	_{DS} = 20 V	I _{DSX}	max.		1.0		nA
-V _{GS} = 5 V		I _{DSX}	max.			1.0	nA
–V _{GS} = 12 V		I _{DSX}	max.	200			nA
$-V_{GS} = 7 V$ V_{I}	$_{DS} = 20 \text{ V};$	I _{DSX}	max.		200		nA
$ \begin{array}{c} -V_{GS} = 12 \text{ V} \\ -V_{GS} = 7 \text{ V} \\ -V_{GS} = 5 \text{ V} \end{array} $	amb = 100 °C	I _{DSX}	max.			200	nA
Drain saturation cu							
	0		min.	50	25	5	mA
$V_{DS} = 20 \text{ V}; \text{ V}_{GS}$	= 0	I _{DSS}	max.	150	100	60	mA
Gate-source break	down voltage						
–I _G = 1 μA; V _{DS} =	= 0	-V _{(BR)GSS}	min.	40	40	40	V
Gate-source cut-of	voltage						
Vac - 20 V/· la - 1	nA		min.	4.0	2.0	0.5	V

-V_{GS off}

R_{DS on}

 $V_{DS on}$

 $V_{\text{DS on}}$

V_{DS on}

 $V_{DS} = 20 \text{ V}; I_D = 1 \text{ nA}$

April 1989

Drain-source on-resistance $I_D = 1 \text{ mA}; V_{GS} = 0$ Drain-source on-voltage $V_{GS} = 0; I_D = 12 \text{ mA}$ $V_{GS} = 0; I_D = 6 \text{ mA}$ $V_{GS} = 0; I_{D} = 3 \text{ mA}$

PN4391 to 4393

DYNAMIC CHARACTERISTICS

 T_j = 25 °C unless otherwise specified

.]							
				PN4391	PN4392	PN4393	
Drain-source on-resistan	се						•
$V_{DS} = 0 V; V_{GS} = 0; f =$	⊧ 1 kHz; T _a = 25 °C	R_{DSon}	max.	30	60	100	Ω
Input capacitance							
$V_{DS} = 20 \text{ V}; \text{ V}_{GS} = 0; \text{ f}$	= 1 MHz; T _a = 25 °C	C _{iss}	max.	16	16	16	pF
Feedback capacitance							
$V_{DS} = 0; -V_{GS} = 12 V$		C _{rss}	max.	5			pF
$V_{DS} = 0; -V_{GS} = 7 V$	f = 1 MHz	C _{rss}	max.		5		pF
$V_{DS} = 0; -V_{GS} = 5 V$		C _{rss}	max.			5	pF
Switching times							
test conditions							
$V_{DD} = 10 \text{ V}; \text{ V}_{GS} = 0 \text{ f}$	to V _{GS off}	I _D	=	12	6.0	3.0	mΑ
		$-V_{GS off}$	=	12	7.0	5.0	V
		RL	=	750	1550	3150	Ω
Rise time		t _r	max.	5	5	5	ns
Turn-on time		t _{on}	max.	15	15	15	ns
Fall time		t _f	max.	15	20	30	ns
Turn-off time		t _{off}	max.	20	35	50	ns

PACKAGE OUTLINE

PN4391 to 4393

PN4391 to 4393

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Short-form specification	The data in this specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
I have been a second second	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.