
SIEMENS

PNP Silicon High-Voltage Transistors

PZTA 92 PZTA 93

- High breakdown voltage
- Low collector-emitter saturation voltage
- Complementary types: PZTA 42, PZTA 43 (NPN)

Туре	Marking	Ordering Code	Pin Configuration		Package ¹⁾		
		(tape and reel)	1	2	3	4	_
PZTA 92	PZTA 92	Q62702-Z2037	В	С	Е	С	SOT-223
PZTA 93	PZTA 93	Q62702-Z2038					

Maximum Ratings

Parameter	Symbol	V	Unit	
		PZTA 92	PZTA 93	
Collector-emitter voltage	V _{CE0}	300	200	V
Collector-base voltage	V _{CB0}	300	200	
Emitter-base voltage	V _{EB0}	5		
Collector current	<i>I</i> c		mA	
Base current	/ в	100		
Total power dissipation, Ts = 124 °C	Ptot	1.5		W
Junction temperature	T _j	150		°C
Storage temperature range	Tstg	- 65		

Thermal Resistance

Junction - ambient ²⁾	Rth JA	≤ 72	K/W
Junction - soldering point	Rth JS	≤ 17	

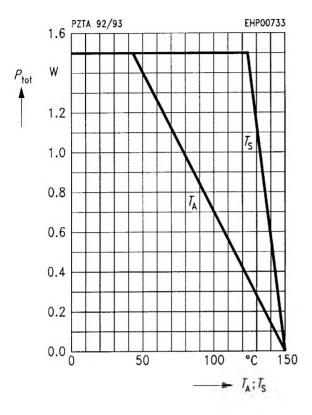
¹⁾ For detailed information see chapter Package Outlines.

²⁾ Package mounted on epoxy pcb 40 mm \times 40 mm \times 1.5 mm/6 cm² Cu.

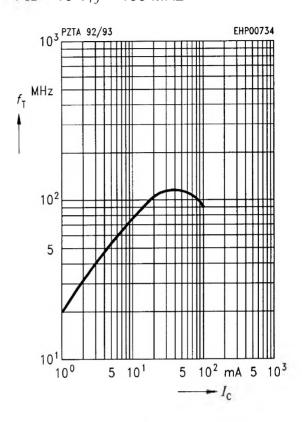
SIEMENS

Electrical Characteristics

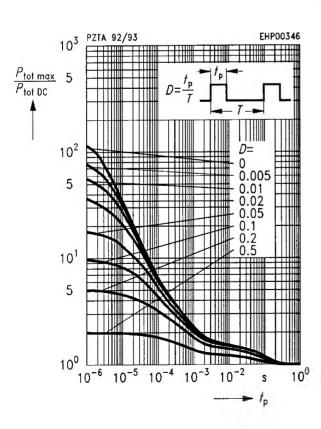
at T_A = 25 °C, unless otherwise specified.

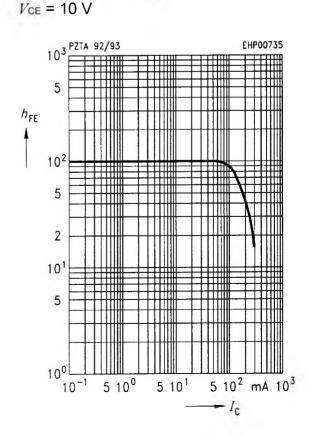

Parameter	Symbol		Unit		
		min.	typ.	max.	
DC characteristics					
Collector-emitter breakdown voltage $I_C = 1 \text{ mA}, I_B = 0$ PZTA 92 PZTA 93	$V_{(BR)CE0}$	300 200	_	_	V
Collector-base breakdown voltage I_C = 100 μ A, I_B = 0 PZTA 92 PZTA 93	$V_{(BR)CB0}$	300 200	_	-	
Emitter-base breakdown voltage $I_E = 100 \mu A$, $I_C = 0$	$V_{(BR)EB0}$	5	-	_	
Collector-base cutoff current $V_{\text{CB}} = 200 \text{ V} \qquad \qquad \text{PZTA 92}$ $V_{\text{CB}} = 160 \text{ V} \qquad \qquad \text{PZTA 93}$ $V_{\text{CB}} = 200 \text{ V}, T_{\text{A}} = 150 \text{ °C} \qquad \text{PZTA 92}$ $V_{\text{CB}} = 160 \text{ V}, T_{\text{A}} = 150 \text{ °C} \qquad \text{PZTA 93}$	Ісво		- - -	250 250 20 20	nA nA μA μA
Emitter-base cutoff current $V_{EB} = 3 \text{ V}, I_{C} = 0$	<i>I</i> Eво	-	-	100	nA
DC current gain ¹⁾ $I_C = 1 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_C = 30 \text{ mA}, V_{CE} = 10 \text{ V}$	hfe	25 40 25	-	<u>-</u>	_
Collector-emitter saturation voltage ¹⁾ $I_C = 20 \text{ mA}, I_B = 2 \text{ mA}$ PZTA 92 PZTA 93	V ^{CEsat}		_	0.5 0.4	V
Base-emitter saturation voltage ¹⁾ $I_C = 20 \text{ mA}, I_B = 2 \text{ mA}$	V_{BEsat}	_	_	0.9	
AC characteristics					
Transition frequency $I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 10 V, f = 100 MHz	fi	-	100	_	MHz
Collector-base capacitance $V_{\text{CB}} = 20 \text{ V}, f = 1 \text{ MHz}$ PZTA 92	Соро	=	_	6	pF

PZTA 92 PZTA 93

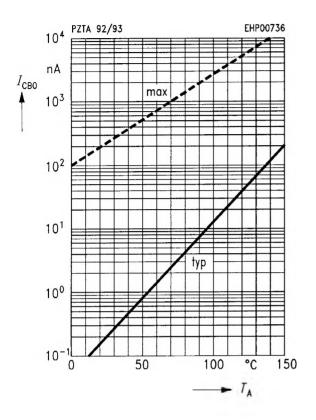

Pulse test conditions: $t \le 300 \,\mu\text{s}$, $D = 2 \,\%$.

SIEMENS

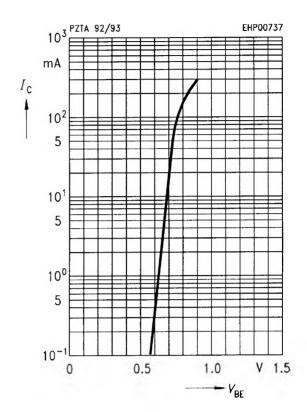

Total power dissipation $P_{tot} = f(T_A^*; T_S)$ * Package mounted on epoxy


Transition frequency $f_T = f(I_C)$ $V_{CE} = 10 \text{ V}, f = 100 \text{ MHz}$

Permissible pulse load $P_{\text{tot max}} / P_{\text{tot DC}} = f(t_p)$



DC current gain $h_{FE} = f(I_C)$


SIEMENS

Collector cutoff current $I_{CBO} = f(T_A)$ $V_{CB} = 160 \text{ V}$

Collector current $I_C = f(V_{BE})$

$$V_{CE} = 10 \text{ V}$$

SAB 80515	SAB 80515 / 80535 Data Sheet			
Revision History:		Current Version: 08.95		
Previous Ve	ersion:	09.89, 11.92		
Page	Subjects (changes since last revision)			
1, 2, 27, 29, 30	 40 to + 110 °C version deleted; Note: only on request added 			
29 36	$t_{\rm C}$ and $V_{\rm int\ ERROR}$ modified Header of table (16 MHz) corrected			

Edition 08.95

This edition was realized using the software system FrameMaker[®].

Published by Siemens AG, Bereich Halbleiter, Marketing-Kommunikation, Balanstraße 73, 81541 München

© Siemens AG 1995.

All Rights Reserved.

Attention please!

As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list).

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.

For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components¹ of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems² with the express written approval of the Semiconductor Group of Siemens AG.

- 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.
- 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.