New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

RFL1N08, RFL1N10

1A, 80V and 100V, 1.200 Ohm, N-Channel, Power MOSFETs

Features

- 1A, 80V and 100V
- r_{DS(ON)} = 1.200Ω

Ordering Information

PART NUMBER	PACKAGE	BRAND
RFL1N08	TO-205AF	RFL1N08
RFL1N10	TO-205AF	RFL1N10

NOTE: When ordering, use the entire part number.

Description

These are N-channel enhancement mode silicon-gate power field-effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers and drivers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits.

Symbol

Packaging

JEDEC TO-204AA

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

Absolute Maximum Ratings T_C = 25° C, Unless Otherwise Specified

	RFL1N08	RFL1N10	UNITS
Drain to Source Voltage (Note 1)	80	100	V
Drain to Gate Voltage (R _{GS} = 20kΩ) (Note 1)	80	100	V
Continuous Drain Current	1	1	А
Pulsed Drain Current (Note 3	5	5	А
Gate to Source VoltageV _{GS}	±20	±20	V
Maximum Power Dissipation P _D	8.33	8.33	W
Linear Derating Factor	0.0667	0.0667	W/ ^o C
Operating and Storage Temperature	-55 to 150	-55 to 150	°C
Maximum Temperature for Soldering			
Leads at 0.063in (1.6mm) from Case for 10s	260	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Drain to Source Breakdown Voltage RFL1N08	BV _{DSS}	I _D = 250μ A , V _{GS} = 0V	80	-	-	v
RFL1N10			100	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}$, $I_D = 250\mu A$, (Figure 8)	2	-	4	V
Zero Gate Voltage Drain Current	IDSS	V _{GS} = Rated BV _{DSS} , V _{GS} = 0V	-	-	1	μA
		V_{DS} = 0.8 x Rated BV _{DSS} , V_{GS} = 0V, T _J = 125 ^o C	-	-	25	μA
On-State Drain Current (Note 2)	I _{D(ON)}	V _{DS} > I _{D(ON)} x r _{DS(ON)MAX} , V _{GS} = 10V	1	-	-	A
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±20V	-	-	±100	, nA
Drain to Source On Resistance	^r DS(ON)	I _D = 5.6A, V _{GS} = 10V, (Figures 6, 7)			1.200	Ω
Turn-On Delay Time	^t d(ON)	$\label{eq:VD} \begin{array}{l} V_{DD} = 50V, \ V_{GS} = 10V, \ I_D \cong 1A, \ R_G = 50\Omega, \\ R_L = 50\Omega \ (Figures \ 10, \ 11, \ 12) \\ MOSFET \ Switching \ Times \ are \ Essentially \ Independent \ of \ Operating \ Temperature \end{array}$	-	17	25	ns
Rise Time	ţ,		-	30	45	nş
Turn-Off Delay Time	td(OFF)		-	30	45	ns
Fall Time	t _f		-	30	50	ns
Input Capacitance	CISS	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz (Figure 9)	-	-	200	pF
Output Capacitance	C _{OSS}		-	-	80	pF
Reverse Transfer Capacitance	C _{RSS}			-	25	pF
Thermal Resistance Junction to Case	R _{θJC}		-	-		°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	МАХ	UNITS
Source to Drain Diode Voltage (Note 2)	V _{SD}	$T_{J} = 25^{o}C, I_{SD} = 1A, V_{GS} = 0V$	-	-	1.4	V
Reverse Recovery Time	t _{rr}	$T_J = 25^{o}C$, $I_{SD} = 1A$, $dI_{SD}/dt = 100A/\mu s$	-	100	-	ns

NOTES:

2. Pulse test: pulse width \leq 300µs, duty cycle \leq 2%.

3. Repetitive rating: pulse width limited by maximum junction temperature.