20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

RFL2N05, RFL2N06

2A, 50 V and $60 \mathrm{~V}, 0.95$ Ohm,

 N-Channel Power MOSFETs
Features

- 2A, 50V and 60 V
- $\mathrm{rDS}_{\mathrm{DS}}^{(\mathrm{ON})}=0.95 \Omega$
- SOA is Power-Dissipation Limited
- Nanosecond Switching Speeds
- Linear Transfer Characteristics
- High Input Impedance
- Majority Carrier Device
- Related Literature

Description

These are N -Channel enhancement mode silicon gate power field effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Symbol

Ordering Information

PART NUMBER	PACKAGE	BRAND
RFL2N05	TO-205AF	RFL2N05
RFL2N05	TO-205AF	RFL2N05

NOTE: When ordering, include the entire part number.

Packaging

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

Drain to Source Voltage (Note 1)	. VDSS
Drain to Gate Voltage ($\left.\mathrm{R}_{\mathrm{GS}}=1 \mathrm{MS}\right)$ (Note 1).	$V_{\text {DGR }}$
Gate to Source Voltage	$V_{G S}$
Drain Current, RMS Continuous.	ID
Pulsed.	. DM
Maximum Power Dissipation	P_{D}
Linear Derating Factor	
Operating and Storage Temperature Range	$T_{J}, T_{\text {STG }}$
Maximum Temperature for Soldering	
Leads at 0.063in (1.6mm) from Case for 10 s	
Package Body for 10s, See Techbrief 334	Tpkg

RFL2N05
50
50
± 20
2
10
8.33
0.0667
-55 to 150

300
260

RLF2N06	UNITS
60	V
60	V
± 20	V
2	A
10	A
8.33	W
0.0667	$\mathrm{~W}^{\circ} \mathrm{C}$
-55 to 150	${ }^{\circ} \mathrm{C}$
300	${ }^{\circ} \mathrm{C}$
260	${ }^{\circ} \mathrm{C}$

CALTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_{J}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Electrical Specifications $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage RFL2N05	$B V_{\text {DSS }}$	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	50	-	-	V
RFL2N06			60	-	-	V
Gate to Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$	$V_{G S}=V_{D S}, I_{D}=250 \mu \mathrm{~A},($ Figure 8)	2	-	4	V
Zero-Gate Voltage Drain Current	IDSS	$\begin{aligned} & V_{D S}=0.8 \times \text { Rated } B V_{D S S}, \\ & T_{C}=25^{\circ} \mathrm{C} \end{aligned}$	-	-	1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	-	-	25	$\mu \mathrm{A}$
Gate to Source Leakage Current	IGSS	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	-	-	± 100	nA
Drain to Source On Voltage (Note 2)	$V_{\text {DS(ON }}$	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{G S}=10 \mathrm{~V}$	-	-	0.95	V
		$\mathrm{I}_{\mathrm{D}}=2 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	-	-	2.0	V
		$\mathrm{l}_{\mathrm{D}}=4 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=15 \mathrm{~V}$	-	-	4.8	V
Drain to Source On Resistance (Note 2)	${ }^{\text {r }}$ (${ }^{\text {(ON }}$)	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V},($ Figures 6,7$)$	-	-	0.95	Ω
Forward Transconductance (Note 2)	$\mathrm{gfs}^{\text {f }}$	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\text {DS }}=10 \mathrm{~V},($ Figure 10$)$	400	-	-	S
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{R}_{\mathrm{GS}}=50 \Omega, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V},(\text { Figures } 11,12,13) \end{aligned}$	-	6	15	ns
Rise Time	t_{r}		-	14	30	ns
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (} \mathrm{OFF})}$		-	16	30	ns
Fall Time	t_{f}		-	30	50	ns
Input Capacitance	$\mathrm{C}_{\text {ISS }}$	$\begin{aligned} & V_{G S}=0 \mathrm{~V}, V_{D S}=25 \mathrm{~V}, \\ & f=1 \mathrm{MHZ},(\text { Figure } 9) \end{aligned}$	-	-	200	pF
Output Capacitance	$\mathrm{C}_{\text {OSS }}$		-	-	85	pF
Reverse-Transfer Capacitance	$\mathrm{C}_{\text {RSS }}$		-	-	30	pF
Thermal Resistance Junction to Case	$\mathrm{R}_{\text {QJC }}$		-	-	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage (Note 2)	$V_{S D}$	$I_{S D}=1 A$	-	-	1.4	V
Diode Reverse Recovery Time	t_{rr}	$\mathrm{I}_{\mathrm{SD}}=2 \mathrm{~A}, \mathrm{~d} \mathrm{~d}_{\mathrm{SD}} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s}$	-	100	-	ns

NOTE:
2. Pulse test: pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

