New Jersey Semi-Conductor Products, Inc.

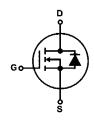
20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

RFL2N05, RFL2N06

2A, 50V and 60V, 0.95 Ohm, N-Channel Power MOSFETs

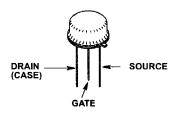

Features

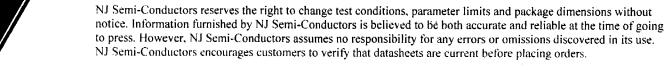
- 2A, 50V and 60V
- r_{DS(ON)} = 0.95Ω
- · SOA is Power-Dissipation Limited
- · Nanosecond Switching Speeds
- Linear Transfer Characteristics
- · High Input Impedance
- Majority Carrier Device
- · Related Literature

Description

These are N-Channel enhancement mode silicon gate power field effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Symbol


Ordering Information


PART NUMBER	PACKAGE	BRAND
RFL2N05	TO-205AF	RFL2N05
RFL2N05	TO-205AF	RFL2N05

NOTE: When ordering, include the entire part number.

Packaging

JEDEC TO-205AF

Quality Semi-Conductors

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RFL2N05	RLF2N06	UNITS
Drain to Source Voltage (Note 1)	50	60	V
Drain to Gate Voltage (R _{GS} = 1MΩ) (Note 1)V _{DGR}	50	60	V
Gate to Source Voltage	±20	±20	V
Drain Current, RMS Continuousl _D	2	2	Α
Pulsedl _{DM}	10	10	Α
Maximum Power Dissipation	8.33	8.33	W
Linear Derating Factor	0.0667	0.0667	W/ °C
Operating and Storage Temperature Range	-55 to 150	-55 to 150	oC
Maximum Temperature for Soldering			
Leads at 0.063in (1.6mm) from Case for 10s	300	300	°C
Package Body for 10s, See Techbrief 334	260	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

$\textbf{Electrical Specifications} \hspace{0.5cm} \textbf{T}_{C} = 25^{o}\text{C, Unless Otherwise Specified}$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage RFL2N05	BV _{DSS}	I _D = 250μA, V _{GS} = 0	50	-	-	V
RFL2N06			60	-	-	V
Gate to Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250\mu$ A, (Figure 8)	2	-	4	V
Zero-Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 0.8 \text{ x Rated BV}_{DSS},$ $T_C = 25^{\circ}C$	-	-	1	μΑ
		T _C = 125°C	-	-	25	μΑ
Gate to Source Leakage Current	Igss	$V_{GS} = \pm 20V, V_{DS} = 0$	-	-	±100	nA
Drain to Source On Voltage (Note 2)	V _{DS(ON)}	I _D = 1A, V _{GS} = 10V	-	-	0.95	٧
		I _D = 2A, V _{GS} = 10V	-	-	2.0	٧
		I _D = 4A, V _{GS} = 15V	-	-	4.8	V
Drain to Source On Resistance (Note 2)	^r DS(ON)	I _D = 1A, V _{GS} = 10V, (Figures 6, 7)	-	-	0.95	Ω
Forward Transconductance (Note 2)	9fs	I _D = 1A, V _{DS} = 10V, (Figure 10)	400	-	-	S
Turn-On Delay Time	t _{d(ON)}	$I_D = 1A$, $V_{DD} = 30V$, $R_{GS} = 50\Omega$, $V_{GS} = 10V$, (Figures 11, 12, 13)	-	6	15	ns
Rise Time	t _r		-	14	30	ns
Turn-Off Delay Time	t _{d(OFF)}		-	16	30	ns
Fall Time	t _f		-	30	50	ns
Input Capacitance	C _{ISS}	V _{GS} = 0V, V _{DS} = 25V, f = 1MHz, (Figure 9)	-	-	200	pF
Output Capacitance	c _{oss}		-	-	85	pF
Reverse-Transfer Capacitance	C _{RSS}		-	-	30	рF
Thermal Resistance Junction to Case	$R_{\theta JC}$		-	-	15	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage (Note 2)	V _{SD}	I _{SD} = 1A	-	-	1.4	V
Diode Reverse Recovery Time	t _{rr}	I _{SD} = 2A, dI _{SD} /dt = 50A/μs	-	100	-	ns

NOTE:

2. Pulse test: pulse width $\leq 300 \mu s$, duty cycle $\leq 2\%$.