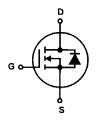
20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

RFM12N08, RFM12N10, RFP12N08, RFP12N10

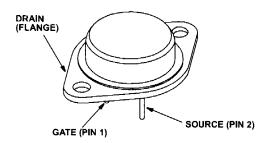

12A, 80V and 100V, 0.200 Ohm, N-Channel Power MOSFETs

These are N-Channel enhancement mode silicon gate power field effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Features

- 12A, 80V and 100V
- r_{DS(ON)} = 0.200Ω
- · Related Literature

Symbol


Ordering Information

PART NUMBER	PACKAGE	BRAND		
RFM12N08	TO-204AA	RFM12N08		
RFM12N10	TO-204AA	RFM12N10		
RFP12N08	TO-220AB	RFP12N08		
RFP12N10	TO-220AB	RFP12N10		

NOTE: When ordering, use the entire part number.

Packaging

JEDEC TO-204AA

JEDEC TO-220AB

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

RFM12N08, RFM12N10, RFP12N08, RFP12N10

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RFM12N08	RFM12N10	RFP12N08	RFP12N10	UNITS
Drain to Source Voltage (Note 1)VDSS	80	100	80	100	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1) V_{DGR}	80	100	80	100	V
Continuous Drain Current	12	12	12	12	Α
Pulsed Drain Current (Note 3)	30	30	30	30	Α
Gate to Source Voltage V _{GS}	±20	±20	±20	±20	V
Maximum Power Dissipation	75	75	60	60	W
Linear Derating Factor	0.6	0.6	0.48	0.48	W/°C
Operating and Storage Temperature	-55 to 150	-55 to 150	-55 to 150	-55 to 150	οС
Maximum Temperature for Soldering					
Leads at 0.063in (1.6mm) from Case for 10sTL	300	300	300	300	°C
Package Body for 10s, See Techbrief 334 T _{pkg}	260	260	260	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage RFM12N08, RFP12N08	BV _{DSS}	I _D = 250μA, V _{GS} = 0V	80	-	-	٧
RFM12N10, EFP12N10			100	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D = 250μA (Figure 8)	2	-	4	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = Rated BV _{DSS} , V _{GS} = 0V	-	-	1	μΑ
		V _{DS} = 0.8 x Rated BV _{DSS} , T _C = 125°C	-	-	25	μΑ
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±20V, V _{DS} = 0V	-	-	±100	nA
Drain to Source On Resistance (Note 2)	r _{DS(ON)}	I _D = 12A, V _{GS} = 10V (Figures 6, 7)	-	-	0.200	Ω
Drain to Source On Voltage (Note 2)	V _{DS(ON)}	I _D = 12A, V _{GS} = 10V	-	-	2.4	V
Turn-On Delay Time	t _d (ON)	$V_{DD} = 50V$, $I_D = 6A$, $R_G = 50\Omega$, $V_{GS} = 10V$, $R_L = 8\Omega$, (Figures 10, 11, 12)	-	45	70	ns
Rise Time	t _r		-	250	375	ns
Turn-Off Delay Time	t _{d(OFF)}		-	85	130	ns
Fall Time	t _f	1	-	100	150	ns
Input Capacitance	C _{ISS}	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz (Figure 9)	-	-	850	pF
Output Capacitance	Coss		-	_	300	pF
Reverse Transfer Capacitance	C _{RSS}	7		-	150	pF
Thermal Resistance Junction to Case	R ₀ JC	RFM12N08, RFM12N10	-	-	1.67	°C/W
		RFP12N08, RFP12N10	-	-	2.083	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Voltage (Note 2)	V _{\$D}	I _{SD} = 6A	-	-	1.4	V
Reverse Recovery Time	t _{rr}	$I_{SD} = 4A$, $dI_{SD}/dt = 100A/\mu s$	-	150	-	ns