20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

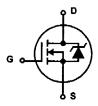
FAX: (973) 376-8960

RFP4N100, RF1S4N100SM

4.3A, 1000V, 3.500 Ohm, High Voltage, N-Channel Power MOSFETs

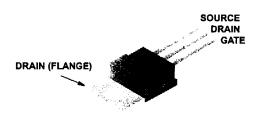
The RFP4N100 and RFP4N100SM are N-Channel enhancement mode silicon gate power field effect transistors. They are designed for use in applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. This type can be operated directly from an integrated circuit.

Features


- 4.3A, 1000V
- r_{DS(ON)} = 3.500Ω
- · UIS Rating Curve (Single Pulse)
- -55°C to 150°C Operating Temperature

Ordering Information

PART NUMBER	PACKAGE	BRAND		
RFP4N100	TO-220AB	RFP4N100		
RF1S4N100SM	TO-263AB	F1S4N100		


NOTE: When ordering, use the entire part number.

Symbol

Packaging

JEDEC TO-220AB

JEDEC TO-263AB

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

RFP4N100, RF1S4N100SM

Absolute Maximum Ratings T_C = 25°C, Unless Otherwise Specified

	RFP4N100, RF1S4N100SM	UNITS
Drain to Source Breakdown Voltage (Note 1)	1000	V
Drain to Gate Voltage (R _{GS} = 20kΩ) (Note 1)	1000	V
Continuous Drain Current	4.3	Α
Pulsed Drain Current (Note 3)	17	Α
Gate to Source Voltage	±20	V
Single Pulse Avalanche Rating	(See UIS SOA Curve) (Figures 4, 14, 15)	mJ
Maximum Power Dissipation	150 1.2	W/oC
Operating and Storage Temperature	-55 to 150	°C
Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from case for 10s	300 260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0V (Figure 10)	1000	-	-	٧
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D = 250μA	2	-	4	٧
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 1000V, V _{GS} = 0V	-	-	25	μА
		V _{DS} = 800V, V _{GS} = 0V, T _C = 150°C	-	-	100	μА
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±20V	-	-	±100	nA
Drain to Source On Resistance (Note 2)	^r DS(ON)	I _D = 2.5A, V _{GS} = 10V (Figures 8, 9)	-	-	3.500	Ω
Turn-On Delay Time	td(ON)	V_{DD} = 500V, I_{D} ≈ 3.9A, R_{GS} = 9.1Ω, R_{L} = 120Ω)	-	-	30	ns
Rise Time	t _r		-	-	50	ns
Turn-Off Delay Time	t _d (OFF)		-	~	170	ns
Fall Time	t _f		-	-	50	ns
Total Gate Charge (Gate to Source + Gate to Drain)	Q _{g(TOT)}	V _{GS} = 20V, I _D = 3.9A, V _{DS} = 800V (Figure 13)	-	-	120	nC
Thermal Resistance Junction to Case	R ₀ JC		-	-	0.83	°C/W
Thermal Resistance Junction to Ambient	R _{0JA}		-	-	62	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	V _{SD}	I _{SD} = 4.3A	-	-	1.8	V
Reverse Recovery Time	t _{rr}	I _{SD} = 3.9A, dI _{SD} /dt = 100A/μs	-	-	1000	ns

NOTES:

- 2. Pulse test: pulse width $\leq 80\mu s$, duty cycle $\leq 2\%$.
- 3. Repetitive rating: pulse width limited by maximum junction temperature.