SGSF341/IF341
 SGSF441/IF441/F541

FASTSWITCH HOLLOW-EMITTER NPN TRANSISTORS

- HIGH SWITCHING SPEED NPN POWER TRANSISTORS
- HOLLOW EMITTER FOR FAST SWITCHING
- HIGH VOLTAGE FOR OFF-LINE APPLICATIONS
- TOkHz SWITCHING SPEED
- LOW COST DRIVE CIRCUITS
- LOW DYNAMIC SATURATION

1.PPLICATIONS

- SMPS

こESCRIPTION

tollow emitter FASTSWITCH NPN power transisbrs have been specifically designed for 220V (and T17V with input doubler) off-line switching power
supply applications. Hollow emitter transistors can operate up to 70 kHz with simple drive circuits which helps to simplify design and improve reliability. These transistors are suitable for applications in bridge and two transistor forward medium power converters, 450 W to 900 W . When used in conjunction with a low voltage Power MOSFET in emitter switch configuration in flyback and forward converters, they can operate at up to 100 kHz .

These hollow emitter FASTSWITCH transistors are available in TO-220, TO-218, ISOWATT220 and ISOWATT218 packages. The ISOWATT218 conforms to the creepage distance and isolation requirements of VDE, IEC, and UL specifications. Additionally these FASTSWITCH transistors are available in metal TO-3 packages.

s BSOLUTE MAXIMUM RATINGS

Symbol	Parameter	SGS					Unit
		F341	IF341	F441	IF 441	F541	
$V_{\text {CES }}$	Collector - Emitter Voltage ($\left.\mathrm{V}_{\mathrm{BE}}=0\right)$	850					V
$\mathrm{V}_{\text {CEO }}$	Collector - Emitter Voltage ($\mathrm{I}_{\mathrm{B}}=0$)	400					V
VEBO	Emitter - Base Voltage ($\mathrm{I}_{\mathrm{C}}=0$)	7					V
IC	Collector Current	10					A
$I_{\text {CM }}$	Collector Peak Current ($\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}$)	15					A
I_{B}	Base Current	6					A
$I_{B M}$	Base Peak Current ($t_{p}<5 \mathrm{~ms}$)	10					A
P_{101}	Total Dissipation at $T_{c} \leq 25^{\circ} \mathrm{C}$	85	40	95	55	115	W
$\mathrm{T}_{\text {stg }}$	Storage Temperature - 65 to	150	150	150	150	175	${ }^{\circ} \mathrm{C}$
T_{1}	Junction Temperature	150	150	150	150	175	${ }^{\circ} \mathrm{C}$

THERMAL DATA

		SGS						
			F341	IF341	F441	IF441	F541	
R $_{\text {thj-case }}$	Thermal Resistance Junction-case	Max	1.47	3.12	1.31	2.27	1.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($T_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

RESISTIVE LOAD

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
t_{0}	Turn-on Time	$\begin{aligned} & I_{C}=6 A \\ & I_{B_{1}}=1.2 A \end{aligned}$	$\begin{aligned} & V_{C C}=250 \mathrm{~V} \\ & I_{B 2}=-2 I_{B 1} \end{aligned}$		0.5	1	$\mu \mathrm{s}$
t_{s}	Storage Time				1.6	2.5	$\mu \mathrm{s}$
t_{t}	Fall Time				0.25	0.35	$\mu \mathrm{s}$
ton	Turn-on Time	$\begin{array}{lr} I_{C}=6 \mathrm{~A} & \mathrm{~V}_{\mathrm{CC}}=250 \mathrm{~V} \\ I_{\mathrm{B} 1}=1.2 \mathrm{~A} & I_{\mathrm{B} 2}=-2 I_{\mathrm{B}} \\ \text { with Antisaturation Network } \end{array}$			0.5		$\mu \mathrm{s}$
t_{s}	Storage Time				1.1		$\mu \mathrm{S}$
t_{t}	Fall Time				0.2		$\mu \mathrm{s}$
ton	Turn-on Time	$\begin{aligned} & I_{C}=6 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 1}=1.2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{C C}=250 \mathrm{~V} \\ & V_{\mathrm{BE}(\text { (olf) })}=-5 \mathrm{~V} \end{aligned}$		0.5		$\mu \mathrm{s}$
t_{s}	Storage Time				1.4		μs
t_{1}	Fall Time				0.1		$\mu \mathrm{s}$

INDUCTIVE LOAD

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
t_{s}	Storage Time	$\mathrm{I}_{\mathrm{c}}=6 \mathrm{~A}$	$h_{\text {FE }}=5$		1.4	2.8	$\mu \mathrm{s}$
1	Fall Time	$\begin{aligned} & V_{C L}=350 \mathrm{~V} \\ & \mathrm{~L}=300 \mu \mathrm{H} \end{aligned}$	$\begin{aligned} & V_{\mathrm{BE}(\mathrm{Of})}=-5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{B}(\mathrm{Off})}=1.2 \Omega \end{aligned}$		0.1	0.2	$\mu \mathrm{s}$
t_{s}	Storage Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=6 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CL}}=350 \mathrm{~V} \end{aligned}$	$\dot{n}_{F E}=5$			4	μs
1	Fall Time	$\begin{aligned} & \mathrm{L}=300 \mu \mathrm{H} \\ & \mathrm{~T}_{\mathrm{c}}=100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{\mathrm{BE}(\mathrm{Off})}=-5 \mathrm{~V} \\ & R_{\mathrm{B}(\mathrm{off})}=1.2 \Omega \end{aligned}$			0.3	$\mu \mathrm{s}$

[^0]उ®e Operating Areas

zC Current Gain

Sollector-emitter Saturation Voltage

Reverse Biased Safe Operating Area

Collector-emitter Saturation Voltage

Base-emitter Saturation Voltage

Resistive Load Switching Times

Switching Times Percentance Variation

Inductive Load Switching Times

ISOWATT PACKAGES CHARACTERISTICS AND APPLICATION

The ISOWATT220 and ISOWATT218 are fully isolated packages. The ISOWATT220 is isolated to 2000 V dc and the ISOWATT218 to 4000 V dc. Their thermal impedence, given in the datasheet, is optimised to give efficient thermal conduction together with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. For the ISOWATT218 these distances are in agreement with VDE and UL creepage and clearance standards. The ISOWATT218 is supplied with longer leads than the standard TO-218 to allow easy mounting on PCB's. The ISOWATT220 and ISOWATT218 packages eliminate the need for external isolation
so reducing fixing hardware. Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink capacitance.
The thermal performance of these packages is better than that of the standard part mounted with a 0.1 mm mica washer. The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for these ISOWATT packages is determined by :

$$
P_{D}=\frac{T_{j}-T_{c}}{R_{\mathrm{th}}}
$$

THERMAL IMPEDANCE OF ISOWATT PACKAGES

Fig. 1 illustrates the elements contributing to the thermal resistance of a transistor heatsink assemdy, using ISOWATT packages.
The total thermal resistance Rth(tol) is the sum of each of these elements. The transient thermal imsedance, $Z_{\text {th }}$ for different pulse durations can be estimated as follows :
1 - For a short duration power pulse of less than 1 ms :

$$
Z_{\text {In }}<R_{\text {th JJ }-C}
$$

Figure 1.

2 - For an intermediate power pulse of 5 ms to 50 ms seconds:

$$
Z_{\mathrm{th}}=\mathrm{R}_{\mathrm{th} \mathrm{~J}-\mathrm{C}}
$$

3 - For long power pulses of the order of 500 ms secons or greater :

$$
Z_{\mathrm{l}}=R_{\mathrm{th} J-\mathrm{C}}+\mathrm{R}_{\mathrm{thC}} \cdot \mathrm{HS}+\mathrm{R}_{\mathrm{thHS}}-\mathrm{amb}
$$

It is often possible to discern these areas on transent thermal impedance curves.

$R_{\text {th } J-C} \quad R_{\text {thC }-H S} \quad R_{\text {th HS }}-\mathrm{amb}$
 WNW MN

[^0]: * Pulsed : Pulse duration $=300 \mu \mathrm{~s}$, duty cycle $=1.5 \%$

