

FASTSWITCH HOLLOW-EMITTER NPN TRANSISTORS

- HIGH SWITCHING SPEED NPN POWER TRANSISTORS
- HOLLOW EMITTER TECHNOLOGY
- HIGH VOLTAGE FOR OFF-LINE APPLICA-TIONS
- 70kHz SWITCHING SPEED
- LOW COST DRIVE CIRCUITS
- LOW DYNAMIC SATURATION

APPLICATIONS

SMPS

DESCRIPTION

Hollow emitter FASTSWITCH NPN power transistors are specially designed for 240V (and 110V with input doubler) off-line switching power supply applications. Hollow emitter transistors can operate up to 70kHz with simple drive circuits which helps to

simplify designs and improve reliability. The superior switching performance reduces dissipation and consequently lowers the equipment operating temperature. The high voltage rating of these transistors allows simplification of the over voltage snubbing network. These transistors are suitable for applications in half bridge, push-pull and full bridge medium power converters, 550W to 1100W. When used in conjunction with a low voltage Power MOS-FET in emitter switch configuration, they can operate at up to 100kHz.

These hollow emitter FASTSWITCH transistors are available in TO-218 and the fully isolated ISOWATT218 packages. The ISOWATT218 conforms to the creepage distance and isolation requirements of VDE, IEC, and UL specifications. Additionally these FASTSWITCH transistors are available in metal TO-3 packages.

ABSOLUTE MAXIMUM RATINGS

Symbol	Desemator		Unit		
	Parameter	F463	IF463	F563	Unit
VCES	Collector - Emitter Voltage (V _{BE} = 0)	1000			V
VCEO	Collector - Emitter Voltage (I _B = 0)	450			V
VEBO	Emitter - Base Voltage (I _C = 0)	7			V
Ι _C	Collector Current	12			A
ICM	Collector Peak Current (tp < 5ms)	20			A
1 _B	Base Current	7			A
IBM	Base Peak Current (tp < 5ms)	12			A
Ptot	Total Dissipation at T _c ≤ 25°C	125	65	150	W
Tstg	Storage Temperature - 65 to	150	150	175	°C
Τ,	Junction Temperature	150	150	175	°C

SGSF463-SGSIF463-SGSF563

THERMAL DATA

			SGS			
			F463	IF463	F563	
R _{thj-case}	Thermal Resistance Junction-case	Max	1	1.92	1	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
ICES	Collector Cutoff Current (V _{BE} = 0)	V _{CE} = 1000V				200	μA
ICEO	Collector Cutoff Current (I _B = 0)	V _{CE} = 380V V _{CE} = 450V				200 2	μA mA
IEBO	Emitter Cutoff Current (I _C = 0)	$V_{EB} = 7V$				1	mA
VCEO (sus)*	Collector Emitter Sustaining Voltage	I _C = 0.1A		450			V
V _{CE (sat)} .	Collector Emitter Saturation Voltage	•	= 1.4A = 0.6A			1.5 1.5	V V
VBE (sat)*	Base Emitter Saturation Voltage	•	= 1.4A = 0.6A			1.5 1.5	V V

RESISTIVE LOAD

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
tan	Turn-on Time				1	1.7	μs
ts	Storage Time	$I_{C} = 7A$ $I_{B1} = 1.4A$	$V_{CC} = 250V$		1.4	2.3	μs
tr	Fall Time		185 - 5181		0.25	0.5	μs
ton	Turn-on Time	$I_{C} = 7A$ $I_{B1} = 1.4A$ with Antisatur	V _{CC} = 250V		1		μs
ts	Storage Time		$I_{B2} = -2I_{B1}$		1		μs
t _f	Fall Time		ation Network		0.15		μs
ton	Turn-on Time			Ĭ	1		μs
ts	Storage Time	$I_{C} = 7A$ $I_{B1} = 1.4A$	$V_{CC} = 250V$ $V_{BE(off)} = -5V$		1		μs
tj	Fall Time		* BE(OT) 5 * -		0.06		μs

INDUCTIVE LOAD

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
ts	Storage Time	$l_c = 7A$	h _{FE} = 5		1.4	2.8	μs
tr	Fall Time	V _{CL} = 350V L = 300µH	$V_{BE(off)} = -5V - R_{B(off)} = 1.2\Omega$		0.1	0.2	μs
ts	Storage Time	I _C = 7A V _{CL} = 350V	h _{FE} = 5			4	μs
tr	Fall Time	$L = 300 \mu H$ $T_c = 100^{\circ}C$	$V_{\text{BE(off)}} = -5V - R_{\text{B(off)}} = 1.2\Omega$			0.3	μs

Pulsed : Pulse duration = 300µs, duty cycle = 1.5%

DC Current Gain

Collector-emitter Saturation Voltage

Reverse Biased Safe Operating Area

Collector-emitter Saturation Voltage

Resistive Load Switching Times

Switching Times Percentance Variation

Inductive Load Switching Times

ISOWATT218 PACKAGE CHARACTERISTICS AND APPLICATION

ISOWATT218 is fully isolated to 4000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together with excellent electrical isolation. The structure of the case ensures optimum distances between the pins and heatsink. These distances are in agreement with VDE and UL creepage and clearance standards. The ISOWATT218 package eliminates the need for external isolation so reducing fixing hardware.

The package is supplied with leads longer than the standard TO-218 to allow easy mounting on pcbs. Accurate moulding techniques used in manufacture

assures consistent heat spreader-to-heatsink capacitance.

ISOWATT218 thermal performance is equivalent to that of the standard part, mounted with a 0.1mm mica washer.

The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for ISOWATT218 packages is determined by :

$$P_{D} = \frac{T_{j} - T_{c}}{R_{tn}}$$

THERMAL IMPEDANCE OF ISOWATT218 PACKAGE

Fig. 1 illustrates the elements contributing to the mermal resistance of a transistor heatsink assembly, using ISOWATT218 package.

The total thermal resistance $R_{th(tot)}$ is the sum of each of these elements.

The transient thermal impedance, Z_{th} for different pulse durations can be estimated as follows :

 For a short duration power pulse of less than 1ms :

 $Z_{th} < R_{thJ-C}$

Figure 1.

2 - For an intermediate power pulse of 5ms to 50ms seconds :

$$Z_{th} = R_{thJ-C}$$

3 - For long power pulses of the order of 500ms seconds or greater :

$$Z_{th} = R_{thJ-C} + R_{thC-HS} + R_{thHS-amb}$$

It is often possible to discern these areas on transient thermal impedance curves.

RthJ-C RthC-HS RthHS-amb