SGSF464 SGSIF464/F564

FASTSWITCH HOLLOW-EMITTER NPN TRANSISTORS

- HIGH SWITCHING SPEED NPN POWER TRANSISTORS
- HOLLOW EMITTER TECHNOLOGY
- HIGH VOLTAGE FOR OFF-LINE APPLICATIONS
- 50kHz SWITCHING SPEED
- LOW COST DRIVE CIRCUITS
- LOW DYNAMIC SATURATION

APPLICATIONS

- SMPS
- TV HORIZONTAL DEFLECTION

DESCRIPTION

These hollow emitter FASTSWITCH NPN power ransistors are specially designed for 220V (and :17V with input doubler) off-line switching power ミנpply and colour CRT deflection applications. Holisw emitter transistors can be used to advantage in
off-line switching power supply applications where their high voltage rating is a benefit in forward and flyback converters because a costly transformer clamp winding or over voltage snubbers can be omitted. High voltage hollow emitter transistors can operate up to 50 kHz with simple drive circuits which help to simplify design and improve reliability. These transistors can also be used in half bridge, push-pull and full bridge medium power converters, 450W to 950 W . When used in conjunction with a low voltage Power MOSFET in emitter switch configuration in flyback and forward converters, they can operate at up to 100 kHz .
These hollow emitter FASTSWITCH transistors are available in TO-218 and fully isolated TO-218 packages. The ISOWATT218 conforms to the creepage distance and isolation requirements of VDE, IEC. and UL specifications. Additionally these FASTSWITCH transistors are available in metal TO-3 packages.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	SGS			Unit
		F464	IF464	F564	
$V_{\text {CES }}$	Collector - Emitter Voltage ($\left.\mathrm{V}_{\mathrm{BE}}=0\right)$	1200			V
$V_{\text {CEO }}$	Collector - Emitter Voltage ($\mathrm{I}_{\mathrm{B}}=0$)	600			V
$\mathrm{V}_{\text {EBO }}$	Emitter - Base Voltage ($\mathrm{I}_{\mathrm{C}}=0$)	7			V
Ic	Collector Current	10			A
$I_{C M}$	Collector Peak Current ($t_{p}<5 \mathrm{~ms}$)	15			A
I_{8}	Base Current	7			A
$I_{B M}$	Base Peak Current ($t_{D}<5 \mathrm{~ms}$)	12			A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}} \leq 25^{\circ} \mathrm{C}$	125	65	150	W
$\mathrm{T}_{\mathrm{s} 19}$	Storage Temperature - 65 to	150	150	175	${ }^{\circ} \mathrm{C}$
Ti	Junction Temperature	150	150	175	${ }^{\circ} \mathrm{C}$

THERMAL DATA

			SGS			
			F464	IF464	F564	
$\mathrm{R}_{\text {thj-case }}$	Thermal Resistance Junction-case	Max	1	1.92	1	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
ICES	Collector Cutoff Current $\left(V_{B E}=0\right)$	$\mathrm{V}_{\text {CE }}=1200 \mathrm{~V}$			200	$\mu \mathrm{A}$
ICEO	Collector Cutoff Current $\left(I_{B}=0\right)$	$\begin{aligned} & V_{C E}=380 \mathrm{~V} \\ & V_{C E}=600 \mathrm{~V} \end{aligned}$			$\begin{gathered} 200 \\ 2 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$I_{\text {ebo }}$	Emitter Cutoff Current ($\mathrm{I}_{\mathrm{C}}=0$)	$V_{E B}=7 \mathrm{~V}$			1	$m A$
$\mathrm{V}_{\text {CEO }}$ (sus).	Collector Emitter Sustaining Voltage	$\mathrm{I}^{\prime}=0.1 \mathrm{~A}$	600			\checkmark
$V_{C E}$ (sat)*	Collector Emitter Saturation Voltage	$\begin{array}{ll} I_{C}=6 A & I_{B}=1.2 A \\ I_{C}=3.5 A & I_{B}=0.5 A \end{array}$			$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$V_{B E}$ (sat) ${ }^{\text {a }}$	Base Emitter Saturation Voltage	$\begin{array}{ll} I_{C}=6 A & I_{B}=1.2 A \\ I_{C}=3.5 A & I_{B}=0.5 A \\ \hline \end{array}$			$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

RESISTIVE LOAD

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
ton	Turn-on Time	$\begin{aligned} & I_{C}=6 A \\ & I_{B_{1}}=12 A \end{aligned}$		0.6	1.2	$\mu \mathrm{s}$
t_{s}	Storage Time			2.45	3.5	$\mu \mathrm{s}$
t_{1}	Fall Time			0.12	0.4	$\mu \mathrm{s}$
ton	Turn-on Time	$\begin{array}{lr} I_{C}=6 \mathrm{~A} & \mathrm{~V}_{\mathrm{CC}}=250 \mathrm{~V} \\ I_{\mathrm{B} 1}=1.2 \mathrm{~A} & I_{\mathrm{B} 2}=-2 \mathrm{I}_{\mathrm{B} 1} \\ \text { With Antisaturation Network } \end{array}$		0.6		$\mu \mathrm{s}$
t_{s}	Storage Time			1.7		$\mu \mathrm{s}$
t_{f}	Fall Time			0.12		$\mu \mathrm{s}$
ton	Turn-on Time	$\begin{array}{ll} I_{C}=6 A & V_{C C}=250 V \\ I_{B 1}=1.2 A & V_{B E(O f f)}=-5 V \end{array}$		0.6		$\mu \mathrm{s}$
t_{s}	Storage Time			1.3		$\mu \mathrm{s}$
t_{1}	Fall Time			0.2		$\mu \mathrm{s}$

INDUCTIVE LOAD

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
t_{s}	Storage Time	$\begin{aligned} & I_{C}=6 A \\ & V_{C L}=450 \mathrm{~V} \\ & L=300 \mu \mathrm{H} \end{aligned}$	$\begin{aligned} & h_{F E}=5 \\ & V_{B E \text { (olf) }}=-5 V \\ & R_{B(\text { olf })}=0.8 \Omega \end{aligned}$		1.4	2.8	$\mu \mathrm{s}$
t_{1}	Fall Time				0.1	0.2	$\mu \mathrm{s}$
t_{s}	Storage Time	$\begin{array}{ll} I_{C}=6 A & \Pi_{F E}=5 \\ V_{C L}=450 \mathrm{~V} & V_{B E(\text { Of })}=-5 \mathrm{~V} \\ L=300 \mu \mathrm{H} & R_{B(\text { Off })}=0.8 \Omega \\ T_{C}=100^{\circ} \mathrm{C} & \end{array}$				4	$\mu \mathrm{S}$
t_{1}	Fall Time					0.3	$\mu \mathrm{S}$

[^0]Ezfe Operating Areas

JC Current Gain

Sollector-emitter Saturation Voltage

Reverse Biased Safe Operating Area

Collector-emitter Saturation Voltage

Base-emitter Saturation Voltage

Resistive Load Switching Times

Switching Times Percentance Variation

Inductive Load Switching Times

ISOWATT218 PACKAGE CHARACTERISTICS AND APPLICATION
ISOWATT218 PACKAGE CHARACTERISTIC
ISOWATT218 is fully isolated to 4000 V dc. It ther-
mal impedance, given in the data sheet, is optimi-
ISOWATT218 PACKAGE CHARACTERISTIC
ISOWATT 218 is fully isolated to 4000 V dc. Its ther-
mal impedance, given in the data sheet, is optimi-
sed to give efficient thermal conduction together with excellent electrical isolation. The structure of the case ensures optimum distances between the pins and heatsink. These distances are in agreement with VDE and UL creepage and clearance standards. The ISOWATT218 package eliminates the need for external isolation so reducing fixing hardware.
The package is supplied with leads longer than the standard TO-218 to allow easy mounting on pcbs. Accurate moulding techniques used in manufacture
assures consistent heat spreader-to-heatsink capacitance.
ISOWATT218 thermal performance is equivalent to that of the standard part. mounted with a 0.1 mm mica washer. The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for ISOWAT218 packages is determined by :

$$
P_{D}=\frac{T_{1}-T_{0}}{R_{\mathrm{th}}}
$$

THERMAL IMPEDANCE OF ISOWATT218 PACKAGE

-g. 1 illustrates the elements contributing to the thermal resistance of a transistor heatsink assemJly. using ISOWATT218 package.
The total thermal resistance $R_{\text {th(tot) }}$ is the sum of三ach of these elements.
The transient thermal impedance, $Z_{\text {dit }}$ for different sulse durations can be estimated as follows :

- For a short duration power pulse of less than 1 ms :

$$
Z_{n h}<R_{\text {thJ. }}
$$

2 - For an intermediate power pulse of 5 ms to 50 ms seconds :

$$
Z_{t h}=R_{t h J \cdot C}
$$

3 - For long power pulses of the order of 500 ms seconds or greater :

$$
Z_{t h}=R_{t h J}-C+R_{t h C}-H S+R_{t h H S}-a m b
$$

It is often possible to discern these areas on transient thermal impedance curves.

Figure 1.

$R_{\text {thJ-C }} \quad R_{\text {thC-HS }} \quad R_{\text {thHS }}$ amb

[^0]: Pulsed: Pulse duration $=300 \mu$ s, duty cycle $=1.5 \%$

