SGSF664

FASTSWITCH HOLLOW-EMITTER NPN TRANSISTOR

- HIGH SWITCHING SPEED NPN POWER TRANSISTOR
- HOLLOW EMITTER TECHNOLOGY
- HIGH VOLTAGE FOR OFF-LINE APPLICATIONS
- 50 kHz SWITCHING SPEED
- LOW COST DRIVE CIRCUITS
- LOW DYNAMIC SATURATION

APPLICATIONS

- SMPS
- TV AND MONITOR DEFLECTION

DESCRIPTION

This hollow emitter FASTSWITCH NPN power :ransistor is specially designed for 220 V (and 117 V with input doubler) off-line switching power supply applications. It can also be used for 117 V three
phase mains off-line switching power supplies. Hollow emitter transistors can operate at up to 50 kHz with simple drive circuits which helps to simplify design and improve reliability. The superior switching performance reduces dissipation and consequently lowers the equipment operating temperature. This transistor is suitable for applications in half bridge and full bridge high power converters, 900W to 1800W. The high switching speed of this transistor together with its high voltage and current rating, make it ideal for horizontal deflection circuits in large screen colour televisions and monitors. When used in conjunction with a low voltage Power MOSFET in emitter switch configuration, they can operate at up to 100 kHz .

This hollow emitter FASTSWITCH transistor is available in the metal can TO-3 package.
\square

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	SGSF664	Unit
$V_{C E S}$	Collector - Emitter Voltage $\left(\mathrm{V}_{\mathrm{BE}}=0\right)$	1200	V
$\mathrm{~V}_{\mathrm{CEO}}$	Collector - Emitter Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	600	V
$\mathrm{~V}_{\mathrm{EBO}}$	Emitter - Base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0\right)$	7	V
I_{C}	Collector Current	20	A
I_{CM}	Collector Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$	30	A
I_{B}	Base Current	14	A
I_{BM}	Base Peak Current $\left(\mathrm{t}_{p}<5 \mathrm{~ms}\right)$	24	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T} \leq 25^{\circ} \mathrm{C}$	250	W
$\mathrm{~T}_{\text {stg }}$	Storage Temperature -65 to	175	${ }^{\circ} \mathrm{C}$
T_{i}	Junction Temperature	175	${ }^{\circ} \mathrm{C}$

THERMAL DATA

F $_{\text {trj-case }}$	Thermal Resistance Junction-case	Max	0.6	"C/W

ELECTRICAL CHARACTERISTICS ($T_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
ICes	Collector Cutoff Current $\left(V_{B E}=0\right)$	$V_{C E}=1200 \mathrm{~V}$			400	$\mu \mathrm{A}$
ICEO	Collector Cutoff Current $\left(I_{B}=0\right)$	$\begin{aligned} & V_{C E}=380 \mathrm{~V} \\ & V_{C E}=600 \mathrm{~V} \end{aligned}$			$\begin{gathered} 400 \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{uA} \\ & \mathrm{~mA} \end{aligned}$
IEbo	Emitter Cutoff Current ($\mathrm{I}_{\mathrm{C}}=0$)	$V_{E B}=7 \mathrm{~V}$			2	mA
$\mathrm{V}_{\text {CEO }}$ (sus) ${ }^{\text {. }}$	Collector Emitter Sustaining Voltage	$\mathrm{I}_{\mathrm{C}}=0.2 \mathrm{~A}$	600			V
$V_{C E}$ (sat)*	Collector Emitter Saturation Voltage	$\begin{array}{ll} I_{C}=12 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=2.4 \mathrm{~A} \\ \mathrm{I}_{\mathrm{C}}=7 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A} \end{array}$			$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$V_{B E \text { (sat) }}$.	Base Emitter Saturation Voltage	$\begin{array}{ll} I_{C}=12 A & I_{B}=2.4 A \\ I_{C}=7 A & I_{B}=1 A \end{array}$			$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

RESISTIVE LOAD

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
ton	Turn-on Time	$\begin{aligned} & I_{C}=12 \mathrm{~A} \\ & I_{B_{1}}=2.4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{C C}=250 \mathrm{~V} \\ & I_{B 2}=-2 I_{B 1} \end{aligned}$		0.6	1.2	$\mu \mathrm{s}$
t_{s}	Storage Time				2.45	3.5	$\mu \mathrm{s}$
t_{1}	Fall Time				0.12	0.4	$\mu \mathrm{s}$
ton	Turn-on Time	$\begin{array}{ll} I_{C}=12 \mathrm{~A} & V_{C C}=250 \mathrm{~V} \\ I_{B 1}=2.4 \mathrm{~A} & I_{\mathrm{B} 2}=-2 I_{\mathrm{B} 1} \\ \text { with Antisaturation Network } \end{array}$			0.6		$\mu \mathrm{s}$
t_{s}	Storage Time				1.7		$\mu \mathrm{s}$
t_{1}	Fall Time				0.12		$\mu \mathrm{s}$
$t_{0 n}$	Turn-on Time	$\begin{aligned} & I_{C}=12 \mathrm{~A} \\ & I_{B_{1}}=2.4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}=250 \mathrm{~V} \\ & V_{\mathrm{BE}(\mathrm{ofi})}=-5 \mathrm{~V} \end{aligned}$		0.6		$\mu \mathrm{s}$
t_{s}	Storage Time				1.3		$\mu \mathrm{s}$
$t_{\text {f }}$	Fall Time				0.2		$\mu \mathrm{s}$

INDUCTIVE LOAD

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
t_{5}	Storage Time	$\begin{aligned} & I_{C}=12 \mathrm{~A} \\ & V_{C L}=450 \mathrm{~V} \\ & \mathrm{~L}=300 \mu \mathrm{H} \end{aligned}$	$\begin{aligned} & h_{F E}=5 \\ & V_{B E(\text { ofl })}=-5 V \\ & R_{B(0 f l)}=0.5 \Omega \end{aligned}$		1.5	3	$\mu \mathrm{s}$
1.	Fall Time				0.12	0.25	us
ts	Storage Time	$\begin{aligned} & I_{C}=12 \mathrm{~A} \\ & V_{C L}=450 \mathrm{~V} \\ & L=300 \mu \mathrm{H} \\ & T_{C}=100^{\circ} \mathrm{C} \end{aligned}$	$n_{F E}=5$ $V_{B E \text { (olf) }}=-5 \mathrm{~V}$ $R_{\mathrm{B}(011)}=0.5 \mathrm{~S} 2$			4.3	$\mu \mathrm{S}$
t_{1}	Fall Time					0.35	$\mu \mathrm{s}$

[^0]Safe Operating Areas

DC Current Gain

Collector-emitter Saturation Voltage

Reverse Biased Safe Operating Area

Collector-emitter Saturation Voltage

Base-emitter Saturation Voltage

Resistive Load Switching Times

Switching Times Percentance Variation

Inductive Load Switching Times

[^0]: Pulsed Pulse duration $=300 \mu \mathrm{~s}$. duty cycle $=1.5 \%$

