SKiM 180GD176D ...

IGBT Modules

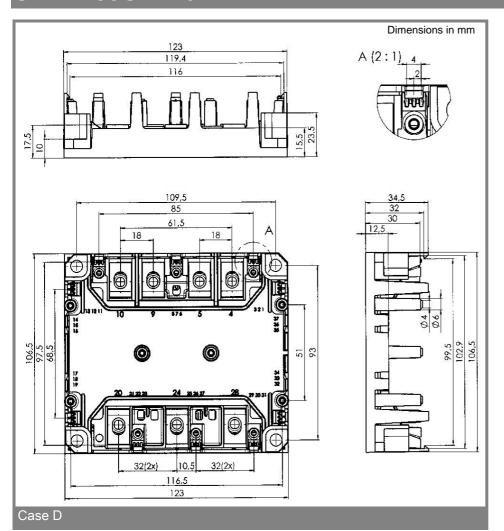
SKiM 180GD176D

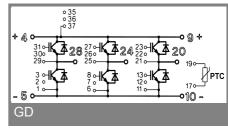
Target Data

Features

- · Homogeneous Si
- Trench = Trenchgate Technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6x I_C

Typical Applications


- AC inverter drives mains 575 -750 V AC
- public transport (auxiliary syst.)


Absolute Maximum Ratings		T _{case} = 25°C, unless otherwise specified							
Symbol	Conditions	Values	Units						
IGBT									
V_{CES}		1700	V						
I _C	T _h = 25 (70) °C	180 (130)	Α						
I _{CM}	$T_h = 25 (70) ^{\circ}C, t_p = 1 \text{ms}$	360 (260)	Α						
V_{GES}	· ·	± 20	V						
$T_j(T_{stg})$	$T_{OPERATION} \leq T_{stg}$	- 40 +125 °C	°C						
V _{isol}	AC, 1 min.	4000	V						
Inverse diode									
$I_F = -I_C$	T _h = 25 (70) °C	140 (100)	Α						
	$T_h = 25 (70) ^{\circ}C, t_p < 1 \text{ms}$	360 (260)	Α						
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	1450	Α						

Character	istics	se = 25°C, unless otherwise specified						
Symbol	Conditions		min.	typ.	max.	Units		
IGBT								
$V_{GE(th)}$	$V_{GE} = V_{CE}$; $I_C = mA$		5,2	5,8	6,4	V		
I _{CES}	V _{GE} = 0; V _{CE} = V _{CES} ; T _i = 25 (125) °C					mA		
V _{CEO}	$V_{GE} = 0 \text{ V; } T_i = 25 \text{ (125) }^{\circ}\text{C}$			1 (0,9)	1,2 (1,1)	V		
r _{CE}	V _{GE} = V; T _i = °C			5 (7,5)	6,3	mΩ		
V _{CEsat}	I _C = 200 A; V _{GF} = 15 V,			2 (2,4)	2,45	V		
OLSU	T _i = 25 (125) °C on chip level							
C _{ies}	V _{GE} = ; V _{CE} = V; f = MHz					nF		
C _{oes}	$V_{GE} = ; V_{CE} = V; f = MHz$					nF		
C _{res}	$V_{GE} = ; V_{CE} = V; f = MHz$					nF		
L _{CE}	$T_c = {^{\circ}C}$					nH		
R _{CC'+EE'}						mΩ		
t _{d(on)}	V _{CC} = 1200 V					ns		
t _r	I _C = 200 A					ns		
t _{d(off)}	$R_{Gon} = R_{Goff} = 12 \Omega$					ns		
t _f	T _j = 125 °C			400 (00)		ns		
E _{on} (E _{off})	V _{GE} ± 15 V			120 (80)		mJ		
Inverse diode								
$V_F = V_{EC}$	I _F = 200 A; V _{GE} = 0 V; T _i = 25 (125) °C					V		
V_{TO}	T _i = 25 (125) °C					V		
r _T	T _i = 25 (125) °C					V		
I _{RRM}	I _F = 200 A; T _i = 125 °C					Α		
Q _{rr}	$V_{GE} = 0 \text{ V di/dt} = A/\mu s$					μC		
E _{rr}	R _{Gon} = R _{Goff} =					mJ		
Thermal characteristics								
R_{thjh}	per IGBT				0,25	K/W		
R_{thjh}	per FWD				0,45	K/W		
Temperature Sensor								
R _{TS}	T = 25 (100) °C			1 (1,67)		kΩ		
tolerance	T = 25 (100) °C			3 (2)		%		
Mechanic	al data							
M ₁	to heatsink (M5)		2		3	Nm		
M_2	for terminals (M6)		4		5	Nm		
w					310	g		

SKiM 180GD176D ...

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.