
SKiM 380GD176DM ...

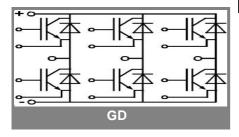
SKiM 5®

Trench IGBT Modules

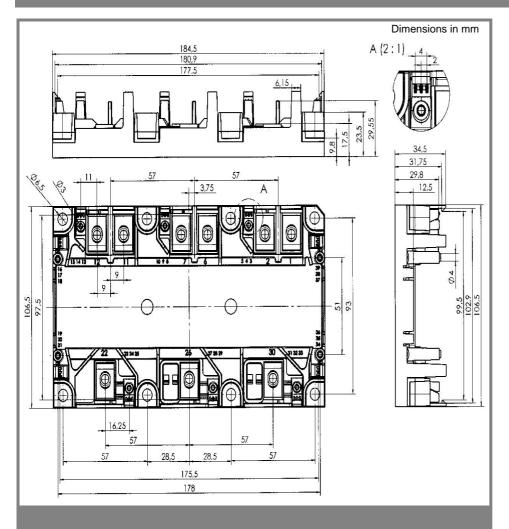
SKiM 380GD176DM

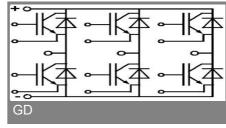
Target Data

Features


- · Homogeneous Si
- Trench = Trenchgate Technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, limiting to 6x I_C

Typical Applications


- AC inverter drives mains 575 -750 V AC
- public transport (auxiliary syst.)


Absolute Maximum Ratings		T _{case} = 25°C, unless otherwise specified							
Symbol	Conditions	Values	Units						
IGBT									
V_{CES}		1700	V						
V _{CES}	T _h = 25 (70) °C	425 (325)	Α						
I _{CM}	$T_h = 25 (70) ^{\circ}C, t_p = 1 \text{ms}$	850 (650)	Α						
V_{GES}	·	± 20	V						
$T_j(T_{stg})$	$T_{OPERATION} \leq T_{stg}$	-40 125	°C						
V_{isol}	AC, 1 min.	4000	V						
Inverse diode									
$I_F = -I_C$	T _h = 25 (70) °C	380 (285)	Α						
$I_{FM} = -I_{CM}$	$T_h = {^{\circ}C}, t_p < ms$	850 (650)	Α						
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	3300	Α						

Characteristics T _{case} = 25°C, unless otherwise spe					
Symbol	Conditions	min.	typ.	max.	Units
IGBT					•
$V_{GE(th)}$	$V_{GE} = V_{CE}$; $I_C = 18 \text{ mA}$	5,2	5,8	6,4	V
I _{CES}	$V_{GE} = 0; V_{CE} = V_{CES};$ $T_i = 25 °C$			3	mA
V_{CEO}	$V_{GF} = V; T_i = {^{\circ}C}$			1,2 (1,1)	V
r _{CE}	$V_{GE} = V; T_i = {^{\circ}C}$			3,3 (4,8)	mΩ
V _{CEsat}	I _C = 375 A; V _{GE} = 15 V,	1,6	2 (2,4)	2,45	V
OLSAI	T _i = 25 (125) °C on chip level				
C _{ies}	V _{GF} = 0; V _{CF} = 25 V; f = 1 MHz		33		nF
Coes	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		1,4		nF
C _{res}	$V_{GE} = 0; V_{CE} = 25 V; f = 1 MHz$		1,1		nF
L _{CE}	$T_c = 25 ^{\circ}C$			20	nΗ
R _{CC'+EE'}			0,9 (1,1)		$m\Omega$
t _{d(on)}	V _{CC} = 1200 V				ns
t _r `´	I _C = 375 A				ns
$t_{d(off)}$	$R_{Gon} = R_{Goff} = 3 \Omega$				ns
t _f	T _j = 125 °C				ns
$E_{on}\left(E_{off}\right)$	V _{GE} ± 15 V		225 (150)		mJ
Inverse d					
$V_F = V_{EC}$	I _F = 375 A; V _{GE} = 0 V; T _i = 25 (125) °C				V
V_{TO}	$T_i = 25 (125) \text{ C}$ $T_i = 25 (125) \text{ °C}$				V
r _T	$T_i = 25 (125) ^{\circ} C$				V
I _{RRM}	$I_F = 375 \text{ A}; T_i = 25 ^{\circ}\text{C}$				Ā
Q _{rr}	$V_{GF} = 0 \text{ V di/dt} = A/\mu s$				μC
E _{rr}	R _{Gon} = R _{Goff} =				mJ
	characteristics				
R _{thjh}	per IGBT	1		0,09	K/W
R _{thjh}	per FWD			0,14	K/W
	ture Sensor	1			1
R _{TS}	T = 25 (125) °C	1	1 (1,67)		kΩ
tolerance	T = 25 (125) °C		3 (2)		%
Mechanic	cal data	1			1
M ₁	to heatsink (M5)	2		3	Nm
M_2	for terminals (M6)	4		5	Nm

SKiM 380GD176DM ...

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.